
MATLAB® 7
Creating Graphical User Interfaces

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Creating Graphical User Interfaces

© COPYRIGHT 2000–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology,
SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The
MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
November 2000 Online Only New for MATLAB 6.0 (Release 12)
June 2001 Online Only Revised for MATLAB 6.1 (Release 12.1)
July 2002 Online Only Revised for MATLAB 6.6 (Release 13)
June 2004 Online Only Revised for MATLAB 7.0 (Release 14)
October 2004 Online Only Revised for MATLAB 7.0.1 (Release 14SP1)
March 2005 Online Only Revised for MATLAB 7.0.4 (Release 14SP2)
September 2005 Online Only Revised for MATLAB 7.1 (Release 14SP3)
March 2006 Online Only Revised for MATLAB 7.2 (Release 2006a)
May 2006 Online Only Revised for MATLAB 7.2
September 2006 Online Only Revised for MATLAB 7.3 (Release 2006b)
March 2007 Online Only Revised for MATLAB 7.4 (Release 2007a)
September 2007 Online Only Revised for MATLAB 7.5 (Release 2007b)

Contents

About GUIs in MATLAB

1
What Is a GUI? . 1-2

How Does a GUI Work? . 1-4

Where Do I Start? . 1-5

Creating a Simple GUI with GUIDE

2
GUIDE: A Brief Introduction . 2-2

Laying Out a GUI . 2-2
Programming a GUI . 2-2

Example: Simple GUI . 2-3
Simple GUI Overview . 2-3
View Completed Layout and Its GUI M-File 2-4

Laying Out a Simple GUI . 2-5
Opening a New GUI in the Layout Editor 2-5
Setting the GUI Figure Size . 2-8
Adding the Components . 2-9
Aligning the Components . 2-10
Adding Text to the Components . 2-12
Completed Layout . 2-18

Saving the GUI Layout . 2-19

Programming a Simple GUI . 2-21
Adding Code to the M-file . 2-21
Generating Data to Plot . 2-21

v

Programming the Pop-Up Menu . 2-24
Programming the Push Buttons . 2-25

Running the GUI . 2-28

Creating a Simple GUI Programmatically

3
Example: Simple GUI . 3-2

Simple GUI Overview . 3-2
View Completed Example . 3-3

Function Summary . 3-4

Creating a GUI M-File . 3-5

Laying Out a Simple GUI . 3-6
Creating the Figure . 3-6
Adding the Components . 3-6

Initializing the GUI . 3-10

Programming the GUI . 3-13
Programming the Pop-Up Menu . 3-13
Programming the Push Buttons . 3-14
Associating Callbacks with Their Components 3-14

Running the Final GUI . 3-16
Final M-File . 3-16
Running the GUI . 3-19

vi Contents

What Is GUIDE?

4
GUIDE: An Overview . 4-2

GUI Layout . 4-2
GUI Programming . 4-2

GUIDE Tools Summary . 4-3

GUIDE Preferences and Options

5
GUIDE Preferences . 5-2

Setting Prefernces . 5-2
Confirmation Preferences . 5-2
Backward Compatibility Preference 5-4
All Other Preferences . 5-6

GUI Options . 5-9
The GUI Options Dialog Box . 5-9
Resize Behavior . 5-10
Command-Line Accessibility . 5-10
Generate FIG-File and M-File . 5-11
Generate FIG-File Only . 5-13

Laying Out a GUIDE GUI

6
Designing a GUI . 6-3

Starting GUIDE . 6-5

Selecting a GUI Template . 6-7
Accessing the Templates . 6-7
Template Descriptions . 6-8

vii

Setting the GUI Size . 6-16

Adding Components to the GUI . 6-18
Available Components . 6-19
Adding Components to the GUIDE Layout Area 6-22
Defining User Interface Controls . 6-27
Defining Panels and Button Groups 6-43
Defining Axes . 6-48
Adding ActiveX Controls . 6-51
Working with Components in the Layout Area 6-53
Locating and Moving Components . 6-57
Resizing Components . 6-60

Aligning Components . 6-62
Alignment Tool . 6-62
Property Inspector . 6-64
Grid and Rulers . 6-65
Guide Lines . 6-66

Setting Tab Order . 6-67

Creating Menus . 6-70
Menus for the Menu Bar . 6-71
Context Menus . 6-79

Creating Toolbars . 6-84
Creating Toolbars with GUIDE . 6-84
Editing Tool Icons . 6-94
Creating Toolbars Programmatically 6-98

Viewing the Object Hierarchy . 6-100

Designing for Cross-Platform Compatibility 6-101
Default System Font . 6-101
Standard Background Color . 6-102
Cross-Platform Compatible Units . 6-103

viii Contents

Saving and Running a GUIDE GUI

7
Naming a GUI and Its Files . 7-2

The GUI Files . 7-2
File and GUI Names . 7-2
Renaming GUIs and GUI Files . 7-3

Saving a GUI . 7-4
Ways to Save a GUI . 7-4
Saving a New GUI . 7-5
Saving an Existing GUI . 7-8

Running a GUI . 7-10
Executing the M-file . 7-10
From the GUIDE Layout Editor . 7-10
From the Command Line . 7-11
From an M-file . 7-11

Programming a GUIDE GUI

8
Callbacks: An Overview . 8-2

Programming of GUIs Created Using GUIDE 8-2
What Is a Callback? . 8-2
Kinds of Callbacks . 8-2

GUI Files: An Overview . 8-5
M-Files and FIG-Files . 8-5
GUI M-File Structure . 8-6
Adding Callback Templates to an Existing GUI M-File . . . 8-6

Associating Callbacks with Components 8-8
GUI Components . 8-8
Setting Callback Properties Automatically 8-8
Deleting Callbacks from a GUI M-File 8-11

ix

Callback Syntax and Arguments . 8-12
Callback Templates . 8-12
Naming of Callback Functions . 8-13
Changing Callback Names Assigned by GUIDE 8-13
Input Arguments . 8-14
handles Structure . 8-15

Initialization Callbacks . 8-16
Opening Function . 8-16
Output Function . 8-18

Examples: Programming GUIDE GUI Components . . . 8-20
Push Button . 8-20
Toggle Button . 8-21
Radio Button . 8-22
Check Box . 8-23
Edit Text . 8-23
Slider . 8-25
List Box . 8-25
Pop-Up Menu . 8-26
Panel . 8-27
Button Group . 8-28
Axes . 8-30
ActiveX Control . 8-33
Menu Item . 8-41

Managing and Sharing Application Data in
GUIDE

9
Mechanisms for Managing Data . 9-2

Overview . 9-2
GUI Data . 9-2
Application Data . 9-5
UserData Property . 9-6

Sharing Data Among a GUI’s Callbacks 9-8
GUI Data . 9-8
Application Data . 9-11
UserData Property . 9-12

x Contents

Making Multiple GUIs Work Together 9-15
Overview of Data Sharing Techniques 9-15
Example — A GUIDE GUI with a Modal Dialog for User

Input . 9-17
Example — Individual GUIDE GUIs that Work Together as

an Application . 9-23

Examples of GUIDE GUIs

10
GUI with Multiple Axes . 10-2

Multiple Axes Example Outcome . 10-2
Techniques Used in the Example . 10-3
View Completed Layout and Its GUI M-File 10-3
Design of the GUI . 10-3
Plot Push Button Callback . 10-6

List Box Directory Reader . 10-9
List Box Example Outcome . 10-9
View Layout and GUI M-File . 10-10
Implementing the GUI . 10-10
Specifying the Directory to List . 10-11
Loading the List Box . 10-12

Accessing Workspace Variables from a List Box 10-16
Workspace Variable Example Outcome 10-16
Techniques Used in This Example . 10-16
View Completed Layout and Its GUI M-File 10-17
Reading Workspace Variables . 10-18
Reading the Selections from the List Box 10-18

A GUI to Set Simulink Model Parameters 10-21
Set Simulink Model Parameters Example Outcome 10-21
Techniques Used in This Example . 10-22
View Completed Layout and Its GUI M-File 10-22
How to Use the GUI (Text of GUI Help) 10-23
Running the GUI . 10-24
Programming the Slider and Edit Text Components 10-25
Running the Simulation from the GUI 10-28

xi

Removing Results from the List Box 10-29
Plotting the Results Data . 10-30
The GUI Help Button . 10-32
Closing the GUI . 10-33
The List Box Callback and Create Function 10-33

An Address Book Reader . 10-35
Address Book Reader Example Outcome 10-35
Techniques Used in This Example . 10-36
Managing Shared Data . 10-36
View Completed Layout and Its GUI M-File 10-37
Running the GUI . 10-37
Loading an Address Book Into the Reader 10-39
The Contact Name Callback . 10-42
The Contact Phone Number Callback 10-44
Paging Through the Address Book — Prev/Next 10-45
Saving Changes to the Address Book from the Menu 10-46
The Create New Menu . 10-48
The Address Book Resize Function 10-48

Using a Modal Dialog to Confirm an Operation 10-52
Modal Dialog Example Outcome . 10-52
View Completed Layouts and Their GUI M-Files 10-52
Setting Up the Close Confirmation Dialog 10-53
Setting Up the GUI with the Close Button 10-54
Running the GUI with the Close Button 10-55
How the GUI and Dialog Work . 10-56

Laying Out a GUI

11
Designing a GUI . 11-2

Creating and Running the GUI M-File 11-4
File Organization . 11-4
File Template . 11-4
Running the GUI . 11-5

Creating the GUI Figure . 11-7

xii Contents

Adding Components to the GUI . 11-10
Available Components . 11-10
Adding User Interface Controls . 11-13
Adding Panels and Button Groups . 11-28
Adding Axes . 11-33
Adding ActiveX Controls . 11-37

Aligning Components . 11-38
Using the Align Function . 11-38
Examples . 11-40

Setting Tab Order . 11-41
How Tabbing Works . 11-41
Default Tab Order . 11-41
Changing the Tab Order . 11-43

Creating Menus . 11-45
Adding Menu Bar Menus . 11-45
Adding Context Menus . 11-49

Creating Toolbars . 11-56
Using the uitoolbar Function . 11-56
Commonly Used Properties . 11-56
Toolbars . 11-57
Displaying and Modifying the Standard Toolbar 11-60

Designing for Cross-Platform Compatibility 11-62
Default System Font . 11-62
Standard Background Color . 11-63
Cross-Platform Compatible Units . 11-64

Programming the GUI

12
Introduction . 12-2

Initializing the GUI . 12-4
Examples . 12-5

xiii

Callbacks: An Overview . 12-9
What Is a Callback? . 12-9
Kinds of Callbacks . 12-10
Associating Callbacks with Components 12-12

Examples: Programming GUI Components 12-15
Programming User Interface Controls 12-15
Programming Panels and Button Groups 12-23
Programming Axes . 12-25
Programming ActiveX Controls . 12-28
Programming Menu Items . 12-28
Programming Toolbar Tools . 12-31

Managing Application-Defined Data

13
Mechanisms for Managing Data . 13-2

Nested Functions . 13-2
GUI Data . 13-2
Application Data . 13-5
UserData Property . 13-7

Sharing Data Among a GUI’s Callbacks 13-9
Nested Functions . 13-9
GUI Data . 13-13
Application Data . 13-16
UserData Property . 13-18

Managing Callback Execution

14
Callback Interruption . 14-2

Callback Execution . 14-2
How the Interruptible Property Works 14-2
How the Busy Action Property Works 14-3
Example . 14-4

xiv Contents

Examples of GUIs Created Programmatically

15
Introduction . 15-2

GUI with Axes, Menu, and Toolbar 15-3
The Example . 15-3
Techniques Used in the Example . 15-5
View and Run the Completed GUI M-Files 15-5
Creating the Data . 15-6
Creating the GUI and Its Components 15-6
Initializing the GUI . 15-11
Defining the Callbacks . 15-12
Helper Function: Plotting the Plot Types 15-16

Color Palette . 15-17
The Example . 15-17
Techniques Used in the Example . 15-21
View and Run the Completed GUI M-File 15-21
Subfunction Summary . 15-21
M-File Structure . 15-23
GUI Programming Techniques . 15-24

Icon Editor . 15-29
The Example . 15-29
Techniques Used in the Example . 15-32
View and Run the Completed GUI M-Files 15-32
Subfunction Summary . 15-32
M-File Structure . 15-35
GUI Programming Techniques . 15-35

Examples

A
Simple Examples (GUIDE) . A-2

Simple Examples (Programmatic) A-2

xv

Programming GUI Components (GUIDE) A-2

Application-Defined Data (GUIDE) A-2

Application Examples (GUIDE) . A-3

GUI Layout (Programmatic) . A-3

Programming GUI Components (Programmatic) A-3

Application-Defined Data (Programmatic) A-4

Application Examples (Programmatic) A-4

Index

xvi Contents

Introduction to Creating GUIs

Chapter 1, About GUIs in
MATLAB (p. 1-1)

Explains what a GUI is, how
a GUI works, and how to get
started creating a GUI.

Chapter 2, Creating a Simple
GUI with GUIDE (p. 2-1)

Steps you through the process
of creating a simple GUI using
GUIDE.

Chapter 3, Creating a Simple
GUI Programmatically (p. 3-1)

Steps you through the process
of creating a simple GUI
programmatically.

1

About GUIs in MATLAB

What Is a GUI? (p. 1-2) Explains a graphical user interface
(GUI) from a GUI user’s perspective.

How Does a GUI Work? (p. 1-4) Explains how a GUI operates from a
software point of view.

Where Do I Start? (p. 1-5) Describes different techniques for
creating GUIs in MATLAB®.

1 About GUIs in MATLAB

What Is a GUI?
A graphical user interface (GUI) is a graphical display that contains devices,
or components, that enable a user to perform interactive tasks. To perform
these tasks, the user of the GUI does not have to create a script or type
commands at the command line. Often, the user does not have to know the
details of the task at hand.

The GUI components can be menus, toolbars, push buttons, radio buttons, list
boxes, and sliders—just to name a few. In MATLAB, a GUI can also display
data in tabular form or as plots, and can group related components.

The following figure illustrates a simple GUI.

The GUI contains

• An axes component

• A pop-up menu listing three data sets that correspond to MATLAB
functions: peaks, membrane, and sinc

• A static text component to label the pop-up menu

• Three buttons that provide different kinds of plots: surface, mesh, and
contour

1-2

What Is a GUI?

When you click a push button, the axes component displays the selected data
set using the specified plot.

1-3

1 About GUIs in MATLAB

How Does a GUI Work?
Each component, and the GUI itself, is associated with one or more
user-written routines known as callbacks. The execution of each callback is
triggered by a particular user action such as a button push, mouse click,
selection of a menu item, or the cursor passing over a component. You, as the
creator of the GUI, provide these callbacks.

In the GUI described in “What Is a GUI?” on page 1-2, the user selects a data
set from the pop-up menu, then clicks one of the plot type buttons. Clicking
the button triggers the execution of a callback that plots the selected data
in the axes.

This kind of programming is often referred to as event-driven programming.
The event in the example is a button click. In event-driven programming,
callback execution is asynchronous, controlled by events external to the
software. In the case of MATLAB GUIs, these events usually take the form
of user interactions with the GUI.

The writer of a callback has no control over the sequence of events that leads
to its execution or, when the callback does execute, what other callbacks might
be running simultaneously.

1-4

Where Do I Start?

Where Do I Start?
First you have to design your GUI. You have to decide what you want it to do,
how you want the user to interact with it, and what components you need.
“Designing a GUI” on page 6-3 lists references that may be of help.

Next, you must decide what technique you want to use to create your GUI.
MATLAB enables you to create GUIs programmatically or with GUIDE, an
interactive GUI builder. It also provides functions that simplify the creation of
standard dialog boxes. The technique you choose depends on your experience,
your preferences, and the kind of GUI you want to create. This table outlines
some possibilities.

GUI Technique

Dialog box MATLAB provides a selection of
standard dialog boxes that you
can create with a single function
call. For links to these functions,
see “Predefined Dialog Boxes” in
the MATLAB Function Reference
documentation.

GUI containing just a few
components

It is often simpler to create GUIs
that contain only a few components
programmatically. Each component
can be fully defined with a single
function call.

Moderately complex GUIs GUIDE simplifies the creation of
such GUIs.

Complex GUIs with many
components, and GUIs that
require interaction with other GUIs

Creating such GUIs
programmatically lets you control
exact placement of the components
and provides reproducibility.

Once you have decided which technique you want to use, you can continue to
learn about creating GUIs in MATLAB by following the examples in these
topics:

1-5

1 About GUIs in MATLAB

• Chapter 2, “Creating a Simple GUI with GUIDE”

• Chapter 3, “Creating a Simple GUI Programmatically”

1-6

2

Creating a Simple GUI with
GUIDE

GUIDE: A Brief Introduction (p. 2-2) Introduces GUIDE, the graphical
user interface development
environment.

Example: Simple GUI (p. 2-3) Describes the example to be
constructed.

Laying Out a Simple GUI (p. 2-5) Lays out the GUI’s components,
including moving, aligning, and
labeling components.

Saving the GUI Layout (p. 2-19) Saves the GUI and gives it a name.

Programming a Simple GUI (p. 2-21) Generates the data to plot and adds
code for each component to the GUI
M-file to make the GUI work.

Running the GUI (p. 2-28) Runs the GUI and demonstrates
how the components work together.

2 Creating a Simple GUI with GUIDE

GUIDE: A Brief Introduction

In this section...

“Laying Out a GUI” on page 2-2

“Programming a GUI” on page 2-2

Laying Out a GUI
GUIDE, the MATLAB graphical user interface development environment,
provides a set of tools for creating graphical user interfaces (GUIs). These
tools simplify the process of laying out and programming GUIs.

The GUIDE Layout Editor enables you to populate a GUI by clicking and
dragging GUI components — such as buttons, text fields, sliders, axes, and so
on — into the layout area. It also enables you to create menus and context
menus for the GUI.

Other tools, which are accessible from the Layout Editor, enable you to size
the GUI, modify component look and feel, align components, set tab order,
view a hierarchical list of the component objects, and set GUI options.

The following topic, “Laying Out a Simple GUI” on page 2-5, uses some
of these tools to show you the basics of laying out a GUI. “GUIDE Tools
Summary” on page 4-3 describes the tools.

Programming a GUI
When you save your GUI layout, GUIDE automatically generates an M-file
that you can use to control how the GUI works. This M-file provides code
to initialize the GUI and contains a framework for the GUI callbacks—the
routines that execute in response to user-generated events such as a mouse
click. Using the M-file editor, you can add code to the callbacks to perform the
functions you want. “Programming a Simple GUI” on page 2-21 shows you
what code to add to the example M-file to make the GUI work.

2-2

Example: Simple GUI

Example: Simple GUI

In this section...

“Simple GUI Overview” on page 2-3

“View Completed Layout and Its GUI M-File” on page 2-4

Simple GUI Overview
This section shows you how to use GUIDE to create the graphical user
interface (GUI) shown in the following figure.

The GUI contains

• An axes component

• A pop-up menu listing three different data sets that correspond to MATLAB
functions: peaks, membrane, and sinc

• A static text component to label the pop-up menu

• Three push buttons, each of which provides a different kind of plot: surface,
mesh, and contour

2-3

2 Creating a Simple GUI with GUIDE

To use the GUI, select a data set from the pop-up menu, then click one of the
plot-type buttons. Clicking the button triggers the execution of a callback that
plots the selected data in the axes.

Subsequent topics, starting with “Laying Out a Simple GUI” on page 2-5,
guide you through the steps to create this GUI. We recommend that you
create the GUI for yourself, as this is the best way to learn how to use GUIDE.

View Completed Layout and Its GUI M-File
If you are reading this in the MATLAB Help browser, you can click the
following links to display the GUIDE Layout Editor and the MATLAB Editor
with a completed version of this example.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this online or
in PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the links.

• Click here to display this GUI in the Layout Editor.

• Click here to display the GUI M-file in the MATLAB Editor.

2-4

Laying Out a Simple GUI

Laying Out a Simple GUI

In this section...

“Opening a New GUI in the Layout Editor” on page 2-5

“Setting the GUI Figure Size” on page 2-8

“Adding the Components” on page 2-9

“Aligning the Components” on page 2-10

“Adding Text to the Components” on page 2-12

“Completed Layout” on page 2-18

Opening a New GUI in the Layout Editor

1 Start GUIDE by typing guide at the MATLAB prompt. This displays the
GUIDE Quick Start dialog shown in the following figure.

2-5

2 Creating a Simple GUI with GUIDE

2 In the Quick Start dialog, select the Blank GUI (Default) template.
Click OK to display the blank GUI in the Layout Editor, as shown in the
following figure.

2-6

Laying Out a Simple GUI

3 Display the names of the GUI components in the component palette. Select
Preferences from the MATLAB File menu. Then select GUIDE > Show
names in component palette, and click OK. The Layout Editor then
appears as shown in the following figure.

2-7

2 Creating a Simple GUI with GUIDE

Setting the GUI Figure Size
Set the size of the GUI by resizing the grid area in the Layout Editor. Click
the lower-right corner and drag it until the GUI is approximately 3 inches
high and 4 inches wide. If necessary, make the window larger.

�������	
�
���
��	�����������

2-8

Laying Out a Simple GUI

Adding the Components

1 Add the three push buttons to the GUI. For each push button, select the
push button from the component palette at the left of the Layout Editor
and drag it into the layout area. Position them approximately as shown in
the following figure.

2 Add the remaining components to the GUI.

• A static text area

• A pop-up menu

• An axes

2-9

2 Creating a Simple GUI with GUIDE

Arrange the components as shown in the following figure. Resize the axes
component to approximately 2-by-2 inches.

Aligning the Components
You can use the Alignment Tool to align components with respect to one
another, if they have the same parent. To align the three push buttons:

1 Select all three push buttons by pressing Ctrl and clicking them.

2 Select Align Objects from the Tools menu to display the Alignment Tool.

2-10

Laying Out a Simple GUI

3 Make these settings in the Alignment Tool, as shown in the following figure:

• 20 pixels spacing between push buttons in the vertical direction.

• Left-aligned in the horizontal direction.

2-11

2 Creating a Simple GUI with GUIDE

4 Click OK. Your GUI now looks like this in the Layout Editor.

Adding Text to the Components
Although the push buttons, pop-up menu, and static text show some text in
the Layout Editor, the text is not appropriate to the GUI being created. This
topic shows you how to modify the default text.

• “Labeling the Push Buttons” on page 2-13

• “Entering Pop-Up Menu Items” on page 2-15

• “Modifying the Static Text” on page 2-17

2-12

Laying Out a Simple GUI

After you have added the appropriate text, the GUI will look like this in the
Layout Editor.

Labeling the Push Buttons
Each of the three push buttons lets the user choose a plot type: surf, mesh,
and contour. This topic shows you how to label the buttons with those choices.

1 Select Property Inspector from the View menu.

2-13

2 Creating a Simple GUI with GUIDE

2 In the layout area, select the top push button by clicking it.

3 In the Property Inspector, select the String property and then replace the
existing value with the word Surf.

4 Click outside the String field. The push button label changes to Surf.

2-14

Laying Out a Simple GUI

5 Select each of the remaining push buttons in turn and repeat steps 3 and 4.
Label the middle push button Mesh, and the bottom button Contour.

Entering Pop-Up Menu Items
The pop-up menu provides a choice of three data sets: peaks, membrane, and
sinc. These data sets correspond to MATLAB functions of the same name.
This topic shows you how to list those data sets as choices in the pop-menu.

1 In the layout area, select the pop-up menu by clicking it.

2 In the Property Inspector, click the button next to String. The String
dialog box displays.

2-15

2 Creating a Simple GUI with GUIDE

3 Replace the existing text with the names of the three data sets: Peaks,
Membrane, and Sinc. Press Enter to move to the next line.

2-16

Laying Out a Simple GUI

4 When you are done, click OK. The first item in your list, Peaks, appears in
the pop-up menu in the layout area.

Modifying the Static Text
In this GUI, the static text serves as a label for the pop-up menu. The user
cannot change this text. This topic shows you how to change the static text
to read Select Data.

1 In the layout area, select the static text by clicking it.

2 In the Property Inspector, click the button next to String. In the String
dialog box that displays, replace the existing text with the phrase
Select Data.

2-17

2 Creating a Simple GUI with GUIDE

3 Click OK. The phrase Select Data appears in the static text component
above the pop-up menu.

Completed Layout
In the Layout Editor, your GUI now looks like this and the next step is to
save the layout. The next topic, “Saving the GUI Layout” on page 2-19, tells
you how to do this.

2-18

Saving the GUI Layout

Saving the GUI Layout
When you save a GUI, GUIDE creates two files, a FIG-file and an M-file. The
FIG-file, with extension .fig, is a binary file that contains a description of the
layout. The M-file, with extension .m, contains the code that controls the GUI.

1 Save and activate your GUI by selecting Run from the Tools menu.

2 GUIDE displays the following dialog box. Click Yes to continue.

3 GUIDE opens a Save As dialog box in your current directory and prompts
you for a FIG-file name.

4 Browse to any directory for which you have write privileges, and then enter
the filename simple_gui for the FIG-file. GUIDE saves both the FIG-file
and the M-file using this name.

5 If the directory in which you save the GUI is not on the MATLAB path,
GUIDE opens a dialog box, giving you the option of changing the current

2-19

2 Creating a Simple GUI with GUIDE

working directory to the directory containing the GUI files, or adding that
directory to the top or bottom of the MATLAB path.

6 GUIDE saves the files simple_gui.fig and simple_gui.m and activates
the GUI. It also opens the GUI M-file in your default editor.

The GUI is active. You can select a data set in the pop-up menu and click
the push buttons. But nothing happens. This is because there is no code
in the M-file to service the pop-up menu and the buttons. The next step
is to program the GUI. The next topic, “Programming a Simple GUI” on
page 2-21, shows you how to do this.

2-20

Programming a Simple GUI

Programming a Simple GUI

In this section...

“Adding Code to the M-file” on page 2-21

“Generating Data to Plot” on page 2-21

“Programming the Pop-Up Menu” on page 2-24

“Programming the Push Buttons” on page 2-25

Adding Code to the M-file
When you saved your GUI in the previous topic, “Saving the GUI Layout” on
page 2-19, GUIDE created two files: a FIG-file simple_gui.fig that contains
the GUI layout, and an M-file simple_gui.m that contains the code that
controls the GUI. But the GUI didn’t do anything because there was no code
in the M-file to make it work. This topic shows you how to add code to the
M-file to make it work. There are three steps:

Generating Data to Plot
This topic shows you how to generate the data to be plotted when the user
clicks a button. This data is generated in the opening function. The opening
function is the first callback in every GUIDE-generated GUI M-file. You
can use it to perform tasks that need to be done before the user has access
to the GUI.

In this example, you add code that creates three data sets to the opening
function. The code uses the MATLAB functions peaks, membrane, and sinc.

1 Display the opening function in the M-file editor. If the GUI M-file,
simple_gui.m, is not already open in your editor, open it by selecting
M-file Editor from the View menu. In the editor, click the function icon

on the toolbar, then select simple_gui_OpeningFcn in the pop-up
menu that displays.

2-21

2 Creating a Simple GUI with GUIDE

The cursor moves to the opening function, which already contains this code:

% --- Executes just before simple_gui is made visible.

function simple_gui_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to simple_gui (see VARARGIN)

% Choose default command line output for simple_gui

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes simple_gui wait for user response (see UIRESUME)

% uiwait(handles.figure1);

2-22

Programming a Simple GUI

2 Create data for the GUI to plot by adding the following code to the opening
function immediately after the comment that begins % varargin...

% Create the data to plot.
handles.peaks=peaks(35);
handles.membrane=membrane;
[x,y] = meshgrid(-8:.5:8);
r = sqrt(x.^2+y.^2) + eps;
sinc = sin(r)./r;
handles.sinc = sinc;
% Set the current data value.
handles.current_data = handles.peaks;
surf(handles.current_data)

The first six executable lines create the data using the MATLAB functions
peaks, membrane, and sinc. They store the data in the handles structure,
which is passed as an argument to all callbacks. Callbacks for the push
buttons can retrieve the data from the handles structure.

The last two lines create a current data value and set it to peaks, and then
display the surf plot for peaks. The following figure shows how the GUI
now looks when it first displays.

2-23

2 Creating a Simple GUI with GUIDE

Programming the Pop-Up Menu
The pop-up menu enables the user to select the data to plot. When the GUI
user selects one of the three plots, MATLAB sets the pop-up menu Value
property to the index of the selected string. The pop-up menu callback
reads the pop-up menu Value property to determine what item is currently
displayed and sets handles.current_data accordingly.

1 Display the pop-up menu callback in the M-file editor. Right-click the
pop-up menu component in the Layout Editor to display a context menu.
From that menu, select View Callbacks > Callback.

The GUI M-file opens in the editor if it is not already open, and the cursor
moves to the pop-menu callback, which already contains this code:

% --- Executes on selection change in popupmenu1.

function popupmenu1_Callback(hObject, eventdata, handles)

% hObject handle to popupmenu1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

2 Add the following code to the popupmenu1_Callback after the comment
that begins % handles...

2-24

Programming a Simple GUI

This code first retrieves two pop-up menu properties:

• String — a cell array that contains the menu contents

• Value — the index into the menu contents of the selected data set

It then uses a switch statement to make the selected data set the current
data. The last statement saves the changes to the handles structure.

% Determine the selected data set.
str = get(hObject, 'String');
val = get(hObject,'Value');
% Set current data to the selected data set.
switch str{val};
case 'Peaks' % User selects peaks.

handles.current_data = handles.peaks;
case 'Membrane' % User selects membrane.

handles.current_data = handles.membrane;
case 'Sinc' % User selects sinc.

handles.current_data = handles.sinc;
end
% Save the handles structure.
guidata(hObject,handles)

Programming the Push Buttons
Each of the push buttons creates a different type of plot using the data
specified by the current selection in the pop-up menu. The push button
callbacks get data from the handles structure and then plot it.

2-25

2 Creating a Simple GUI with GUIDE

1 Display the Surf push button callback in the M-file editor. Right-click the
Surf push button in the Layout Editor to display a context menu. From
that menu, select View Callbacks > Callback.

The GUI M-file opens in the editor if it is not already open, and the cursor
moves to the Surf push button callback, which already contains this code:

% --- Executes on button press in pushbutton1.

function pushbutton1_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

2 Add the following code to the callback immediately after the comment that
begins % handles...

% Display surf plot of the currently selected data.
surf(handles.current_data);

3 Repeat steps 1 and 2 to add similar code to the Mesh and Contour push
button callbacks.

• Add this code to the Mesh push button callback, pushbutton2_Callback:

2-26

Programming a Simple GUI

% Display mesh plot of the currently selected data.
mesh(handles.current_data);

• Add this code to the Contour push button callback,
pushbutton3_Callback:

% Display contour plot of the currently selected data.
contour(handles.current_data);

4 Save the M-file by selecting Save from the File menu.

Your GUI is ready to run. The next topic, “Running the GUI” on page 2-28,
tells you how to do that.

2-27

2 Creating a Simple GUI with GUIDE

Running the GUI
In the previous topic, you programmed the pop-up menu and the push buttons.
You also created data for them to use and initialized the display. Now you can
run your GUI and see how it works.

1 Run your GUI by selecting Run from the Layout Editor Tools menu. If
the GUI is on your MATLAB path or in your current directory, you can also
run it by typing its name, simple_gui, at the prompt. The GUI looks like
this when it first displays:

2-28

Running the GUI

2 In the pop-up menu, select Membrane, then click the Mesh button. The
GUI displays a mesh plot of the MATLAB logo.

3 Try other combinations before closing the GUI.

2-29

2 Creating a Simple GUI with GUIDE

2-30

3

Creating a Simple GUI
Programmatically

Example: Simple GUI (p. 3-2) Describes the example to be
constructed.

Function Summary (p. 3-4) Lists the functions that are used in
the construction of the example.

Creating a GUI M-File (p. 3-5) Creates the file that holds the GUI
script and adds help comments to
the file.

Laying Out a Simple GUI (p. 3-6) Creates the figure and adds the
components.

Initializing the GUI (p. 3-10) Performs various initialization
chores and generates the data to plot

Programming the GUI (p. 3-13) Adds code for each component to the
GUI M-file to make the GUI work.

Running the Final GUI (p. 3-16) Runs the final GUI and demonstrates
how the components work together.

3 Creating a Simple GUI Programmatically

Example: Simple GUI

Simple GUI Overview
This section shows you how to write a script that creates the example
graphical user interface (GUI) shown in the following figure.

The GUI contains

• An axes

• A pop-up menu listing three data sets that correspond to MATLAB
functions: peaks, membrane, and sinc

• A static text component to label the pop-up menu

• Three push buttons, each of which provides a different kind of plot: surface,
mesh, and contour

To use the GUI, the user selects a data set from the pop-up menu, then clicks
one of the plot-type push buttons. Clicking the button triggers the execution
of a callback that plots the selected data in the axes.

3-2

Example: Simple GUI

The next topic, “Function Summary” on page 3-4, summarizes the functions
used to create this example GUI.

Subsequent topics guide you through the process of creating the GUI. This
process begins with “Creating a GUI M-File” on page 3-5. We recommend
that you create the GUI for yourself.

View Completed Example
If you are reading this in the MATLAB Help browser, you can click the
following links to display the example GUI and its M-file.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this online or
in PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the links.

• Click here to display the example GUI.

• Click here to display the GUI M-file in the MATLAB Editor.

3-3

3 Creating a Simple GUI Programmatically

Function Summary
MATLAB provides a suite of functions for creating GUIs. This topic introduces
you to the functions you need to create the example GUI.

Functions Used to Create the Simple GUI

Function Description

align Align GUI components such as user interface
controls and axes.

axes Create axes objects.

figure Create figure objects. A GUI is a figure object.

movegui Move GUI figure to specified location on screen.

uicontrol Create user interface control objects, such as
push buttons, static text, and pop-up menus.

Other MATLAB Functions Used to Program the GUI

Function Description

contour Contour graph of a matrix

eps Floating point relative accuracy

get Query object properties

membrane Generate the MATLAB logo

mesh Mesh plot

meshgrid Generate X and Y arrays for 3-D plots

peaks Example function of two variables.

set Set object properties

sin Sine; result in radians

sqrt Square root

surf 3-D shaded surface plot

3-4

Creating a GUI M-File

Creating a GUI M-File
Start by creating an M-file for the example GUI.

1 At the MATLAB prompt, type edit. MATLAB opens the editor.

2 Type or copy the following statement into the editor. This function
statement is the first line in the file.

function simple_gui2

3 Add these comments to the M-file following the function statement. They
are displayed at the command line in response to the help command. They
must be followed by a blank line.

% SIMPLE_GUI2 Select a data set from the pop-up menu, then
% click one of the plot-type push buttons. Clicking the button
% plots the selected data in the axes.
(Leave a blank line here)

4 Add an end statement at the end of the file. This end statement matches
the function statement. Your file now looks like this.

function simple_gui2
% SIMPLE_GUI2 Select a data set from the pop-up menu, then
% click one of the plot-type push buttons. Clicking the button
% plots the selected data in the axes.

end

Note You need the end statement because the example is written using
nested functions. For information about using nested functions, see “Nested
Functions” in the MATLAB Programming documentation.

5 Save the file in your current directory or at a location that is on your
MATLAB path.

The next section, “Laying Out a Simple GUI” on page 3-6, shows you how to
add components to your GUI.

3-5

3 Creating a Simple GUI Programmatically

Laying Out a Simple GUI

In this section...

“Creating the Figure” on page 3-6

“Adding the Components” on page 3-6

Creating the Figure
In MATLAB, a GUI is a figure. This first step creates the figure and positions
it on the screen. It also makes the GUI invisible so that the GUI user cannot
see the components being added or initialized. When the GUI has all its
components and is initialized, the example makes it visible.

% Initialize and hide the GUI as it is being constructed.
f = figure('Visible','off','Position',[360,500,450,285]);

The call to the figure function uses two property/value pairs. The Position
property is a four-element vector that specifies the location of the GUI on the
screen and its size: [distance from left, distance from bottom, width, height].
Default units are pixels.

The next topic, “Adding the Components” on page 3-6, shows you how to add
the push buttons, axes, and other components to the GUI.

Adding the Components
The example GUI has six components: three push buttons, one static text,
one pop-up menu, and one axes. Start by writing statements that add these
components to the GUI. Create the push buttons, static text, and pop-up
menu with the uicontrol function. Use the axes function to create the axes.

1 Add the three push buttons to your GUI by adding these statements to your
M-file following the call to figure.

% Construct the components.
hsurf = uicontrol('Style','pushbutton',...

'String','Surf','Position',[315,220,70,25]);
hmesh = uicontrol('Style','pushbutton',...

'String','Mesh','Position',[315,180,70,25]);

3-6

Laying Out a Simple GUI

hcontour = uicontrol('Style','pushbutton',...
'String','Countour','Position',[315,135,70,25]);

These statements use the uicontrol function to create the push buttons.
Each statement uses a series of property/value pairs to define a push
button.

Property Description

Style In the example, pushbutton specifies the component as a
push button.

String Specifies the label that appears on each push button.
Here, there are three types of plots: Surf, Mesh, Contour.

Position Uses a four-element vector to specify the location of each
push button within the GUI and its size: [distance from
left, distance from bottom, width, height]. Default units
for push buttons are pixels.

Each call returns the handle of the component that is created.

2 Add the pop-up menu and its label to your GUI by adding these statements
to the M-file following the push button definitions.

hpopup = uicontrol('Style','popupmenu',...
'String',{'Peaks','Membrane','Sinc'},...
'Position',[300,50,100,25]);

htext = uicontrol('Style','text','String','Select Data',...
'Position',[325,90,60,15]);

For the pop-up menu, the String property uses a cell array to specify the
three items in the pop-up menu: Peaks, Membrane, Sinc. The static text
component serves as a label for the pop-up menu. Its String property
tells the GUI user to Select Data. Default units for these components
are pixels.

3 Add the axes to the GUI by adding this statement to the M-file. Set
the Units property to pixels so that it has the same units as the other
components.

ha = axes('Units','pixels','Position',[50,60,200,185]);

3-7

3 Creating a Simple GUI Programmatically

4 Align all components except the axes along their centers with the following
statement. Add it to the M-file following all the component definitions.

align([hsurf,hmesh,hcontour,htext,hpopup],'Center','None');

5 Make your GUI visible by adding this command following the align
command.

set(f,'Visible','on')

6 This is what your M-file should now look like:

function simple_gui2
% SIMPLE_GUI2 Select a data set from the pop-up menu, then
% click one of the plot-type push buttons. Clicking the button
% plots the selected data in the axes.

% Create and hide the GUI as it is being constructed.
f = figure('Visible','off','Position',[360,500,450,285]);

% Construct the components.
hsurf = uicontrol('Style','pushbutton','String','Surf',...

'Position',[315,220,70,25]);
hmesh = uicontrol('Style','pushbutton','String','Mesh',...

'Position',[315,180,70,25]);
hcontour = uicontrol('Style','pushbutton',...

'String','Countour',...
'Position',[315,135,70,25]);

htext = uicontrol('Style','text','String','Select Data',...
'Position',[325,90,60,15]);

hpopup = uicontrol('Style','popupmenu',...
'String',{'Peaks','Membrane','Sinc'},...
'Position',[300,50,100,25]);

ha = axes('Units','Pixels','Position',[50,60,200,185]);
align([hsurf,hmesh,hcontour,htext,hpopup],'Center','None');

%Make the GUI visible.
set(f,'Visible','on')

end

3-8

Laying Out a Simple GUI

7 Run your script by typing simple_gui2 at the command line. This is what
your GUI now looks like. Note that you can select a data set in the pop-up
menu and click the push buttons. But nothing happens. This is because
there is no code in the M-file to service the pop-up menu and the buttons.

8 Type help simple_gui2 at the command line. MATLAB displays this
help text.

help simple_gui2
SIMPLE_GUI2 Select a data set from the pop-up menu, then
click one of the plot-type push buttons. Clicking the button
plots the selected data in the axes.

The next topic, “Initializing the GUI” on page 3-10, shows you how to initialize
the GUI.

3-9

3 Creating a Simple GUI Programmatically

Initializing the GUI
When you make the GUI visible, it should be initialized so that it is ready for
the user. This topic shows you how to

• Make the GUI behave properly when it is resized by changing the
component and figure units to normalized. This causes the components to
resize when the GUI is resized. Normalized units map the lower-left corner
of the figure window to (0,0) and the upper-right corner to (1.0, 1.0).

• Generate the data to plot. The example needs three sets of data:
peaks_data, membrane_data, and sinc_data. Each set corresponds to
one of the items in the pop-up menu.

• Create an initial plot in the axes

• Assign the GUI a name that appears in the window title

• Move the GUI to the center of the screen

• Make the GUI visible

1 Replace this code in your M-file:

% Make the GUI visible.
set(f,'Visible','on')

with this code:

% Initialize the GUI.
% Change units to normalized so components resize automatically.
set([f,hsurf,hmesh,hcontour,htext,hpopup],'Units','normalized');
% Generate the data to plot.
peaks_data = peaks(35);
membrane_data = membrane;
[x,y] = meshgrid(-8:.5:8);
r = sqrt(x.^2+y.^2) + eps;
sinc_data = sin(r)./r;
% Create a plot in the axes.
current_data = peaks_data;
surf(current_data);
% Assign the GUI a name to appear in the window title.
set(f,'Name','Simple GUI')

3-10

Initializing the GUI

% Move the GUI to the center of the screen.
movegui(f,'center')
% Make the GUI visible.
set(f,'Visible','on');

2 Verify that your M-file now looks like this:

function simple_gui2
% SIMPLE_GUI2 Select a data set from the pop-up menu, then
% click one of the plot-type push buttons. Clicking the button
% plots the selected data in the axes.

% Create and hide the GUI figure as it is being constructed.
f = figure('Visible','off','Position',[360,500,450,285]);

% Construct the components
hsurf = uicontrol('Style','pushbutton','String','Surf',...

'Position',[315,220,70,25]);
hmesh = uicontrol('Style','pushbutton','String','Mesh',...

'Position',[315,180,70,25]);
hcontour = uicontrol('Style','pushbutton',...

'String','Countour',...
'Position',[315,135,70,25]);

htext = uicontrol('Style','text','String','Select Data',...
'Position',[325,90,60,15]);

hpopup = uicontrol('Style','popupmenu',...
'String',{'Peaks','Membrane','Sinc'},...
'Position',[300,50,100,25]);

ha = axes('Units','Pixels','Position',[50,60,200,185]);
align([hsurf,hmesh,hcontour,htext,hpopup],'Center','None');

% Create the data to plot
peaks_data = peaks(35);
membrane_data = membrane;
[x,y] = meshgrid(-8:.5:8);
r = sqrt(x.^2+y.^2) + eps;
sinc_data = sin(r)./r;

% Initialize the GUI.
% Change units to normalized so components resize

3-11

3 Creating a Simple GUI Programmatically

% automatically.
set([f,hsurf,hmesh,hcontour,htext,hpopup],...

'Units','normalized');
%Create a plot in the axes.
current_data = peaks_data;
surf(current_data);
% Assign the GUI a name to appear in the window title.
set(f,'Name','Simple GUI')
% Move the GUI to the center of the screen.
movegui(f,'center')
% Make the GUI visible.
set(f,'Visible','on');

end

3 Run your script by typing simple_gui2 at the command line. This is what
your GUI should now look like:

The next topic, “Programming the GUI” on page 3-13, shows you how
to program the push buttons and pop-up menu so you can interactively
generate different plots in the axes.

3-12

Programming the GUI

Programming the GUI

In this section...

“Programming the Pop-Up Menu” on page 3-13

“Programming the Push Buttons” on page 3-14

“Associating Callbacks with Their Components” on page 3-14

Programming the Pop-Up Menu
The pop-up menu enables users to select the data to plot. When a GUI
user selects one of the three data sets, MATLAB sets the pop-up menu
Value property to the index of the selected string. The pop-up menu callback
reads the pop-up menu Value property to determine which item is currently
displayed and sets current_data accordingly.

Add the following callback to your file following the initialization code and
before the final end statement.

% Pop-up menu callback. Read the pop-up menu Value property to

% determine which item is currently displayed and make it the

% current data. This callback automatically has access to

% current_data because this function is nested at a lower level.

function popup_menu_Callback(source,eventdata)

% Determine the selected data set.

str = get(source, 'String');

val = get(source,'Value');

% Set current data to the selected data set.

switch str{val};

case 'Peaks' % User selects Peaks.

current_data = peaks_data;

case 'Membrane' % User selects Membrane.

current_data = membrane_data;

case 'Sinc' % User selects Sinc.

current_data = sinc_data;

end

end

3-13

3 Creating a Simple GUI Programmatically

The next topic, “Programming the Push Buttons” on page 3-14, shows you
how to write callbacks for the three push buttons.

Programming the Push Buttons
Each of the three push buttons creates a different type of plot using the
data specified by the current selection in the pop-up menu. The push button
callbacks plot the data in current_data. They automatically have access to
current_data because they are nested at a lower level.

Add the following callbacks to your file following the pop-up menu callback
and before the final end statement.

% Push button callbacks. Each callback plots current_data in the
% specified plot type.

function surfbutton_Callback(source,eventdata)
% Display surf plot of the currently selected data.

surf(current_data);
end

function meshbutton_Callback(source,eventdata)
% Display mesh plot of the currently selected data.

mesh(current_data);
end

function contourbutton_Callback(source,eventdata)
% Display contour plot of the currently selected data.

contour(current_data);
end

The next topic shows you how to associate each callback with its specific
component.

Associating Callbacks with Their Components
When the GUI user selects a data set from the pop-up menu or clicks one
of the push buttons, MATLAB executes the callback associated with that
particular event. But how does MATLAB know which callback to execute?

3-14

Programming the GUI

You must use each component’s Callback property to specify the name of the
callback with which it is associated.

1 To the uicontrol statement that defines the Surf push button, add the
property/value pair

'Callback',{@surfbutton_Callback}

so that the statement looks like this:

hsurf = uicontrol('Style','pushbutton','String','Surf',...
'Position',[315,220,70,25],...
'Callback',{@surfbutton_Callback});

Callback is the name of the property. surfbutton_Callback is the name
of the callback that services the Surf push button.

2 Similarly, to the uicontrol statement that defines the Mesh push button,
add the property/value pair

'Callback',{@meshbutton_Callback}

3 To the uicontrol statement that defines the Contour push button, add
the property/value pair

'Callback',{@contourbutton_Callback}

4 To the uicontrol statement that defines the pop-up menu, add the
property/value pair

'Callback',{@popup_menu_Callback}

The next topic, “Running the Final GUI” on page 3-16, shows the final M-file
and runs the GUI.

3-15

3 Creating a Simple GUI Programmatically

Running the Final GUI

In this section...

“Final M-File” on page 3-16

“Running the GUI” on page 3-19

Final M-File
This is what your final M-file should now look like:

function simple_gui2
% SIMPLE_GUI2 Select a data set from the pop-up menu, then
% click one of the plot-type push buttons. Clicking the button
% plots the selected data in the axes.

% Create and then hide the GUI as it is being constructed.
f = figure('Visible','off','Position',[360,500,450,285]);

% Construct the components.
hsurf = uicontrol('Style','pushbutton','String','Surf',...

'Position',[315,220,70,25],...
'Callback',{@surfbutton_Callback});

hmesh = uicontrol('Style','pushbutton','String','Mesh',...
'Position',[315,180,70,25],...
'Callback',{@meshbutton_Callback});

hcontour = uicontrol('Style','pushbutton',...
'String','Countour',...
'Position',[315,135,70,25],...
'Callback',{@contourbutton_Callback});

htext = uicontrol('Style','text','String','Select Data',...
'Position',[325,90,60,15]);

hpopup = uicontrol('Style','popupmenu',...
'String',{'Peaks','Membrane','Sinc'},...
'Position',[300,50,100,25],...
'Callback',{@popup_menu_Callback});

ha = axes('Units','Pixels','Position',[50,60,200,185]);
align([hsurf,hmesh,hcontour,htext,hpopup],'Center','None');

3-16

Running the Final GUI

% Create the data to plot.
peaks_data = peaks(35);
membrane_data = membrane;
[x,y] = meshgrid(-8:.5:8);
r = sqrt(x.^2+y.^2) + eps;
sinc_data = sin(r)./r;

% Initialize the GUI.
% Change units to normalized so components resize
% automatically.
set([f,ha,hsurf,hmesh,hcontour,htext,hpopup],...
'Units','normalized');
%Create a plot in the axes.
current_data = peaks_data;
surf(current_data);
% Assign the GUI a name to appear in the window title.
set(f,'Name','Simple GUI')
% Move the GUI to the center of the screen.
movegui(f,'center')
% Make the GUI visible.
set(f,'Visible','on');

% Callbacks for simple_gui2. These callbacks automatically
% have access to component handles and initialized data
% because they are nested at a lower level.

% Pop-up menu callback. Read the pop-up menu Value property
% to determine which item is currently displayed and make it
% the current data.

function popup_menu_Callback(source,eventdata)
% Determine the selected data set.
str = get(source, 'String');
val = get(source,'Value');
% Set current data to the selected data set.
switch str{val};
case 'Peaks' % User selects Peaks.

current_data = peaks_data;
case 'Membrane' % User selects Membrane.

current_data = membrane_data;
case 'Sinc' % User selects Sinc.

3-17

3 Creating a Simple GUI Programmatically

current_data = sinc_data;
end

end

% Push button callbacks. Each callback plots current_data in
% the specified plot type.

function surfbutton_Callback(source,eventdata)
% Display surf plot of the currently selected data.

surf(current_data);
end

function meshbutton_Callback(source,eventdata)
% Display mesh plot of the currently selected data.

mesh(current_data);
end

function contourbutton_Callback(source,eventdata)
% Display contour plot of the currently selected data.

contour(current_data);
end

end

3-18

Running the Final GUI

Running the GUI

1 Run the simple GUI by typing the name of the M-file at the command line.

simple_gui2

2 In the pop-up menu, select Membrane, and then click the Mesh button.
The GUI displays a mesh plot of the MATLAB logo.

3 Try other combinations before closing the GUI.

3-19

3 Creating a Simple GUI Programmatically

3-20

Creating GUIs with GUIDE

Chapter 4, What Is GUIDE?
(p. 4-1)

Introduces GUIDE

Chapter 5, GUIDE Preferences
and Options (p. 5-1)

Describes briefly the available
MATLAB preferences and GUI
options.

Chapter 6, Laying Out a GUIDE
GUI (p. 6-1)

Shows you how to start GUIDE
and from there how to populate
the GUI and create menus.
Provides guidance in designing
a GUI for cross-platform
compatibility.

Chapter 7, Saving and Running a
GUIDE GUI (p. 7-1)

Describes the files used to store
the GUI. Steps you through the
process for saving a GUI, and
lists the different ways in which
you can activate a GUI.

Chapter 8, Programming a
GUIDE GUI (p. 8-1)

Explains how user-written
callback routines control GUI
behavior. Shows you how to
associate callbacks with specific
components and explains callback
syntax and arguments. Provides
simple programming examples
for each kind of component.

Chapter 9, Managing and
Sharing Application Data in
GUIDE (p. 9-1)

Explains the mechanisms for
managing application-defined
data and explains how to share
data among a GUIs callbacks.

Chapter 10, Examples of GUIDE
GUIs (p. 10-1)

Illustrates techniques for
programming various behaviors.

4

What Is GUIDE?

GUIDE: An Overview (p. 4-2) Introduces GUIDE, the MATLAB
graphical user interface development
environment.

GUIDE Tools Summary (p. 4-3) Introduces the various tools that
comprise GUIDE.

4 What Is GUIDE?

GUIDE: An Overview

In this section...

“GUI Layout” on page 4-2

“GUI Programming” on page 4-2

GUI Layout
GUIDE, the MATLAB graphical user interface development environment,
provides a set of tools for creating graphical user interfaces (GUIs). These
tools simplify the process of laying out and programming GUIs.

Using the GUIDE Layout Editor, you can populate a GUI by clicking and
dragging GUI components—such as axes, panels, buttons, text fields, sliders,
and so on—into the layout area. You can also create menus and context menus
for the GUI. From the Layout Editor, you can size the GUI, modify component
look and feel, align components, set tab order, view a hierarchical list of the
component objects, and set GUI options.

GUI Programming
GUIDE automatically generates an M-file that controls how the GUI operates.
This M-file provides code to initialize the GUI and contains a framework for
the GUI callbacks—the routines that execute when a user interacts with a
GUI component. Using the M-file editor, you can add code to the callbacks
to perform the functions you want.

Note MATLAB provides a selection of standard dialog boxes that you can
create with a single function call. For information about these dialog boxes
and the functions used to create them, see “Predefined Dialog Boxes” in the
MATLAB Function Reference documentation.

4-2

GUIDE Tools Summary

GUIDE Tools Summary
The GUIDE tools are available from the Layout Editor shown in the figure
below. The tools are called out in the figure and described briefly below.
Subsequent sections show you how to use them.

����	��������

��	���
���

������
����
���

�������
���

��������
���

���������	������

������� �!���

"�	

�������	���
�����	

#������
�������$�%
�����	 "������ &

4-3

4 What Is GUIDE?

Use This
Tool... To...

Layout
Editor

Select components from the component palette, at the left
side of the Layout Editor, and arrange them in the layout
area. See “Adding Components to the GUI” on page 6-18
for more information.

Figure
Resize Tab

Set the size at which the GUI is initially displayed when you
run it. See “Setting the GUI Size” on page 6-16 for more
information.

Menu Editor Create menus and context, i.e., pop-up, menus. See
“Creating Menus” on page 6-70 for more information.

Align
Objects

Align and distribute groups of components. Grids and rulers
also enable you to align components on a grid with an
optional snap-to-grid capability. See “Aligning Components”
on page 6-62 for more information.

Tab Order
Editor

Set the tab and stacking order of the components in your
layout. See “Setting Tab Order” on page 6-67 for more
information.

Toolbar
Editor

Create Toolbars containing predefined and custom push
buttons and toggle buttons. See “Creating Toolbars” on page
6-84 for more information.

Icon Editor Create and modify icons for tools in a toolbar. See “Creating
Toolbars” on page 6-84 for more information.

Property
Inspector

Set the properties of the components in your layout. It
provides a list of all the properties you can set and displays
their current values.

Object
Browser

Display a hierarchical list of the objects in the GUI. See
“Viewing the Object Hierarchy” on page 6-100 for more
information.

Run Save and run the current GUI. See Chapter 7, “Saving and
Running a GUIDE GUI” for more information.

4-4

GUIDE Tools Summary

Use This
Tool... To...

M-File
Editor

Display, in your default editor, the M-file associated with the
GUI. See “GUI Files: An Overview” on page 8-5 for more
information.

Position
Readouts

Continuously display the mouse cursor position and the
positions of selected objects

You can also set preferences that apply to all GUIs at creation, and options
that are GUI-specific. See Chapter 5, “GUIDE Preferences and Options” for
more information.

4-5

4 What Is GUIDE?

4-6

5

GUIDE Preferences and
Options

GUIDE Preferences (p. 5-2) MATLAB preferences for the GUIDE
Layout Editor.

GUI Options (p. 5-9) GUIDE options for individual GUIs.

5 GUIDE Preferences and Options

GUIDE Preferences

In this section...

“Setting Prefernces” on page 5-2

“Confirmation Preferences” on page 5-2

“Backward Compatibility Preference” on page 5-4

“All Other Preferences” on page 5-6

Setting Prefernces
You can set preferences for GUIDE by selecting Preferences from the File
menu. These preferences apply to GUIDE and to all GUIs you create.

The preferences are in different locations within the Preferences dialog box:

Confirmation Preferences
GUIDE provides two confirmation preferences. You can choose whether you
want to display a confirmation dialog box when you

• Activate a GUI from GUIDE

• Export a GUI from GUIDE

5-2

GUIDE Preferences

In the Preferences dialog box, click General > Confirmation Dialogs to
access the GUIDE confirmation preferences. Look for the word GUIDE in the
Tool column.

Prompt to Save on Activate
When you activate a GUI by clicking the Run button in the Layout Editor,
a dialog box informs you of the impending save and lets you choose whether
or not you want to continue.

5-3

5 GUIDE Preferences and Options

Prompt to Save on Export
When you select Export from the Layout Editor File menu, a dialog box
informs you of the impending save and lets you choose whether or not you
want to continue.

Backward Compatibility Preference

Ensure Backward Compatibility (-v6)
GUI FIG-files created or modified with MATLAB 7.0 or a later MATLAB
version are not automatically compatible with Version 6.5 and earlier
versions. GUIDE automatically generates FIG-files, which are a kind of
MAT-file, to hold layout information for GUIs.

5-4

GUIDE Preferences

To make a FIG-file backward compatible, you must select Ensure
backward compatibility (-v6) in the Preferences dialog box under
General > MAT-Files. This is shown in the figure below.

5-5

5 GUIDE Preferences and Options

All Other Preferences
GUIDE provides several other preferences for the Layout Editor interface
and M-file comments. In the Preferences dialog box, click GUIDE to access
these preferences.

The following topics describe the preferences in this dialog:

• “Show Toolbar” on page 5-7

• “Show Names in Component Palette” on page 5-7

• “Show File Extension in Window Title” on page 5-8

• “Show File Path in Window Title” on page 5-8

• “Add Comments for Newly Generated Callback Functions” on page 5-8

5-6

GUIDE Preferences

Show Toolbar
Displays the following toolbar in the Layout Editor window.

Show Names in Component Palette
Displays both icons and names in the component palette, as shown below.
When unchecked, the icons alone are displayed in two columns.

5-7

5 GUIDE Preferences and Options

Show File Extension in Window Title
Displays the GUI FIG-file filename with its file extension, .fig, in the Layout
Editor window title. If unchecked, only the filename is displayed.

Show File Path in Window Title
Displays the full file path in the Layout Editor window title. If unchecked,
the file path is not displayed.

Add Comments for Newly Generated Callback Functions
When this preference is checked, GUIDE includes the comment lines shown
in the following example to all callbacks that are added to the M-file.

% --- Executes during object deletion, before destroying properties.

function figure1_DeleteFcn(hObject, eventdata, handles)

% hObject handle to figure1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

Some callbacks are added automatically because their associated components
are part of the original GUIDE template that you chose. Other commonly
used callbacks are added automatically when you add components. You can
also add callbacks explicitly by selecting them from View Callbacks on the
View menu or on the component’s context menu.

If this preference is unchecked, GUIDE includes comments only for callbacks
that are automatically included to support the original GUIDE template. No
comments are included for any other callbacks that are added to the M-file.

See “Callback Syntax and Arguments” on page 8-12 for more information
about callbacks and about the arguments described in the comments above.

5-8

GUI Options

GUI Options

In this section...

“The GUI Options Dialog Box” on page 5-9

“Resize Behavior” on page 5-10

“Command-Line Accessibility” on page 5-10

“Generate FIG-File and M-File” on page 5-11

“Generate FIG-File Only” on page 5-13

The GUI Options Dialog Box
You can use the GUI Options dialog box to configure various behaviors that
are specific to the GUI you are creating. These options take effect when you
next save the GUI.

Access the dialog box by selecting GUI Options from the Layout Editor
Tools menu.

The following sections describe the options in this dialog box:

5-9

5 GUIDE Preferences and Options

Resize Behavior
You can control whether users can resize the figure window containing your
GUI and how MATLAB handles resizing. GUIDE provides three options:

• Non-resizable — Users cannot change the window size (default).

• Proportional — MATLAB automatically rescales the components in the
GUI in proportion to the new figure window size.

• Other (Use ResizeFcn) — Program the GUI to behave in a certain way
when users resize the figure window.

The first two options set figure and component properties appropriately and
require no other action. Other (Use ResizeFcn) requires you to write a
callback routine that recalculates sizes and positions of the components based
on the new figure size.

Command-Line Accessibility
You can restrict access to a GUI figure from the command line or from an
M-file by using the GUIDE Command-line accessibility options.

Unless you explicitly specify a figure handle, many commands, such as plot,
alter the current figure, i.e., the figure specified by the root CurrentFigure
property and returned by the gcf command. The current figure is usually the
figure that is most recently created or clicked in. However, a figure can also
become the current figure with the statement

figure(h)

or by setting the CurrentFigure property to the figure’s handle.

The gcf function returns the handle of the current figure.

h = gcf

For a GUI created in GUIDE, set the Command-line accessibility option
to prevent users from inadvertently changing the appearance or content
of a GUI by executing commands at the command line or from an M-file,
such as plot. The following table briefly describes the four options for
Command-line accessibility.

5-10

GUI Options

Option Description

Callback (GUI becomes Current
Figure within Callbacks)

The GUI can be accessed only
from within a GUI callback. The
GUI cannot be accessed from the
command line or from an M-script.
This is the default.

Off (GUI never becomes Current
Figure)

The GUI can not be accessed from
a callback, the command line, or an
M-script, without the handle.

On (GUI may become Current
Figure from Command Line)

The GUI can be accessed from a
callback, from the command line,
and from an M-script.

Other (Use settings from
Property Inspector)

You control accessibility by setting
the HandleVisibility and
IntegerHandle properties from the
Property Inspector.

Generate FIG-File and M-File
Select Generate FIG-file and M-file in the GUI Options dialog box if
you want GUIDE to create both the FIG-file and the GUI M-file (this is
the default). Once you have selected this option, you can select any of the
following items in the frame to configure the M-file:

• “Generate Callback Function Prototypes” on page 5-11

• “GUI Allows Only One Instance to Run (Singleton)” on page 5-12

• “Use System Color Scheme for Background” on page 5-12

See “GUI Files: An Overview” on page 8-5 for information about these files.

Generate Callback Function Prototypes
If you select Generate callback function prototypes in the GUI Options
dialog, GUIDE adds templates for the most commonly used callbacks to the
GUI M-file for most components you add to the GUI. You must then write
the code for these callbacks.

5-11

5 GUIDE Preferences and Options

GUIDE also adds a callback whenever you edit a callback routine from the
Layout Editor’s right-click context menu and when you add menus to the
GUI using the Menu Editor.

See “Callback Syntax and Arguments” on page 8-12 for general information
about callbacks.

Note This option is available only if you first select the Generate FIG-file
and M-File option.

GUI Allows Only One Instance to Run (Singleton)
This option allows you to select between two behaviors for the GUI figure:

• Allow MATLAB to display only one instance of the GUI at a time.

• Allow MATLAB to display multiple instances of the GUI.

If you allow only one instance, MATLAB reuses the existing GUI figure
whenever the command to run the GUI is issued. If a GUI already exists,
MATLAB brings it to the foreground rather than creating a new figure.

If you clear this option, MATLAB creates a new GUI figure whenever you
issue the command to run the GUI.

Note This option is available only if you first select the Generate FIG-file
and M-File option.

Use System Color Scheme for Background
The default color used for GUI components is system dependent. This option
enables you to make the figure background color the same as the default
component background color.

If you select Use system color scheme for background (the default),
GUIDE changes the figure background color to match the color of the GUI
components.

5-12

GUI Options

The following figures illustrate the results with and without system color
matching.

Note This option is available only if you first select the Generate FIG-file
and M-File option.

Generate FIG-File Only
The Generate FIG-file only option enables you to open figures and GUIs
to perform limited editing. These can be any figures and need not be GUIs.
GUIs need not have been generated using GUIDE. This mode provides
limited editing capability and may be useful for GUIs generated in MATLAB
Versions 5.3 and earlier. See the guide function for more information.

GUIDE selects Generate FIG-file only as the default if you do one of the
following:

• Start GUIDE from the command line and provide one or more figure
handles as arguments.

guide(fh)

5-13

5 GUIDE Preferences and Options

In this case, GUIDE selects Generate FIG-file only even though there
may be a corresponding M-file in the same location.

• Start GUIDE from the command line and provide the name of a FIG-file for
which no M-file with the same name exists in the same location.

guide('myfig.fig')

• Use the GUIDE Open Existing GUI tab to open a FIG-file for which no
M-file with the same name exists in the same location.

When you save the figure or GUI with Generate FIG-file only selected,
GUIDE saves only the FIG-file. You must update any corresponding M-files
as appropriate.

If you want GUIDE to manage the GUI M-file for you, change the selection
to Generate FIG-file and M-file before saving the GUI. If there is no
corresponding M-file in the same location, GUIDE creates one. If an M-file
with the same name as the original figure or GUI exists in the same location,
GUIDE overwrites it. To prevent this, save the GUI using Save As from the
File menu and select another filename. You must update the new M-file as
appropriate.

5-14

6

Laying Out a GUIDE GUI

Designing a GUI (p. 6-3) Things to think about when
designing a GUI and references to
other sources.

Starting GUIDE (p. 6-5) Shows you many ways to start
GUIDE.

Selecting a GUI Template (p. 6-7) Describes the templates from which
you can choose when you create a
new GUI.

Setting the GUI Size (p. 6-16) Shows you how to set the size at
which a GUI is initially displayed.

Adding Components to the GUI
(p. 6-18)

Describes the process for adding
components to a GUIDE GUI, and
assigning identifiers to them. It also
shows you how to move, copy, paste,
duplicate, and resize components.

Aligning Components (p. 6-62) Describes various approaches for
aligning components.

Setting Tab Order (p. 6-67) Explains tab order and shows you
how to set it.

Creating Menus (p. 6-70) Shows you how to create both menus
that appear on the figure menu bar
and context menus.

Creating Toolbars (p. 6-84) Provides basic direction for
adding toolbars to your GUI
programmatically.

6 Laying Out a GUIDE GUI

Viewing the Object Hierarchy
(p. 6-100)

Describes use of the Object Browser
to view the hierarchy of objects,
including menus, in your GUI.

Designing for Cross-Platform
Compatibility (p. 6-101)

Provides pointers for creating GUIs
that behave more consistently when
run on different platforms.

6-2

Designing a GUI

Designing a GUI
Before creating the actual GUI, it is important to decide what it is you want
your GUI to do and how you want it to work. It is helpful to draw your GUI on
paper and envision what the user sees and what actions the user takes.

Note MATLAB provides a selection of standard dialog boxes that you can
create with a single function call. For information about these dialog boxes
and the functions used to create them, see “Predefined Dialog Boxes” in the
MATLAB Function Reference documentation.

The GUI used in this example contains an axes component that displays
either a surface, mesh, or contour plot of data selected from the pop-up menu.
The following picture shows a sketch that you might use as a starting point
for the design.

A panel contains three push buttons that enable you to choose the type of plot
you want. The pop-up menu contains three strings — peaks, membrane, and
sinc, which correspond to MATLAB functions. You can select the data to
plot from this menu.

Many Web sites and commercial publications such as the following provide
guidelines for designing GUIs:

6-3

6 Laying Out a GUIDE GUI

• AskTog — Essays on good design and a list of First Principles for good user
interface design. The author, Tognazzini, is a well-respected user interface
designer. http://www.asktog.com/basics/firstPrinciples.html.

• Galitz, Wilbert, O., Essential Guide to User Interface Design. Wiley, New
York, NY, 2002.

• GUI Design Handbook — A detailed guide to the use of GUI controls.
http://www.fast-consulting.com/GUI%20Design%20Handbook
/GDH_FRNTMTR.htm.

• Johnson, J., GUI Bloopers: Don’ts and Do’s for Software Developers and
Web Designers. Morgan Kaufmann, San Francisco, CA, 2000.

• Usability Glossary — An extensive glossary of terms
related to GUI design, usability, and related topics.
http://www.usabilityfirst.com/glossary/main.cgi.

• UsabilityNet — Covers design principles, user-centered
design, and other usability and design-related topics.
http://www.usabilitynet.org/management/b_design.htm.

6-4

http://www.asktog.com/basics/firstPrinciples.html
http://www.fast-consulting.com/GUI%20Design%20Handbook/GDH_FRNTMTR.htm
http://www.usabilityfirst.com/glossary/main.cgi
http://www.usabilitynet.org/management/b_design.htm

Starting GUIDE

Starting GUIDE
There are many ways to start GUIDE. You can start GUIDE from the:

• Command line by typing guide

• Start menu by selecting MATLAB > GUIDE (GUI Builder)

• MATLAB File menu by selecting New > GUI

• MATLAB toolbar by clicking the GUIDE button

However you start GUIDE, it displays the GUIDE Quick Start dialog box
shown in the following figure.

The GUIDE Quick Start dialog box contains two tabs:

• Create New GUI — Asks you to start creating your new GUI by choosing
a template for it. You can also specify the name by which the GUI is saved.

6-5

6 Laying Out a GUIDE GUI

See “Selecting a GUI Template” on page 6-7 for information about the
templates.

• Open Existing GUI — Enables you to open an existing GUI in GUIDE.
You can choose a GUI from your current directory or browse other
directories.

6-6

Selecting a GUI Template

Selecting a GUI Template

In this section...

“Accessing the Templates” on page 6-7

“Template Descriptions” on page 6-8

Accessing the Templates
GUIDE provides several templates that you can modify to create your own
GUIs. The templates are fully functional GUIs; they are already programmed.

You can access the templates in two ways:

• Start GUIDE. See “Starting GUIDE” on page 6-5 for information.

• If GUIDE is already open, select New from the File menu in the Layout
Editor.

In either case, GUIDE displays the GUIDE Quick Start dialog box with the
Create New GUI tab selected as shown in the following figure. This tab
contains a list of the available templates.

6-7

6 Laying Out a GUIDE GUI

To use a template:

1 Select a template in the left pane. A preview displays in the right pane.

2 Optionally, name your GUI now by selecting Save on startup as and
typing the name in the field to the right. GUIDE saves the GUI before
opening it in the Layout Editor. If you choose not to name the GUI at this
point, GUIDE prompts you to save it and give it a name the first time
you run the GUI.

3 Click OK to open the GUI template in the Layout Editor.

Template Descriptions
GUIDE provides four fully functional templates. They are described in the
following sections:

• “Blank GUI” on page 6-9

• “GUI with Uicontrols” on page 6-10

• “GUI with Axes and Menu” on page 6-11

• “Modal Question Dialog” on page 6-14

Note To see how the template GUIs work, you can view their M-file code
and look at their callbacks. You can also modify the callbacks for your own
purposes. To view the M-file for any of these templates, open the template in
the Layout Editor and click the M-file Editor button on the toolbar. For
information about using callbacks, see Chapter 8, “Programming a GUIDE
GUI”.

6-8

Selecting a GUI Template

Blank GUI
The blank GUI template displayed in the Layout Editor is shown in the
following figure.

Select the blank GUI if the other templates are not suitable starting points
for the GUI you are creating, or if you prefer to start with an empty GUI.

6-9

6 Laying Out a GUIDE GUI

GUI with Uicontrols
The following figure shows the template for a GUI with user interface controls
(uicontrols) displayed in the Layout Editor. User interface controls include
push buttons, sliders, radio buttons, check boxes, editable and static text
components, list boxes, and toggle buttons.

When you run the GUI by clicking the Run button , the GUI appears as
shown in the following figure.

6-10

Selecting a GUI Template

When a user enters values for the density and volume of an object, and clicks
the Calculate button, the GUI calculates the mass of the object and displays
the result next to Mass(D*V).

To view the M-file code for these user interface controls, open the template in
the Layout Editor and click the M-file Editor button on the toolbar.

GUI with Axes and Menu
The template for a GUI with axes and menu is shown in the following figure.

6-11

6 Laying Out a GUIDE GUI

6-12

Selecting a GUI Template

When you run the GUI by clicking the Run button on the toolbar, the
GUI displays a plot of five lines, each of which is generated from random
numbers using the MATLAB rand(5) command. The following figure shows
an example.

You can select other plots in the pop-up menu. Clicking the Update button
displays the currently selected plot on the axes.

The GUI also has a File menu with three items:

• Open displays a dialog box from which you can open files on your computer.

• Print opens the Print dialog box. Clicking OK in the Print dialog box
prints the figure.

• Close closes the GUI.

To view the M-file code for these menu choices, open the template in the
Layout Editor and click the M-file Editor button on the toolbar.

6-13

6 Laying Out a GUIDE GUI

Modal Question Dialog
The modal question dialog template displayed in the Layout Editor is shown
in the following figure.

Running the GUI displays the dialog box shown in the following figure:

6-14

Selecting a GUI Template

The GUI returns the text string Yes or No, depending on which button you
click.

The GUI is blocking, which means that the current M-file stops executing
until the GUI restores execution. The GUI is also modal, which means
that the user cannot interact with other MATLAB windows until one of the
buttons is clicked.

Select this template if you want your GUI to return a string or to be modal.

To view the M-file code for these capabilities, open the template in the Layout
Editor and click the M-file Editor button on the toolbar. See “Using a
Modal Dialog to Confirm an Operation” on page 10-52 for an example of using
this template with another GUI. Also see the figure WindowStyle property
for more information.

6-15

6 Laying Out a GUIDE GUI

Setting the GUI Size
Set the size of the GUI by resizing the grid area in the Layout Editor. Click
the lower-right corner and drag it until the GUI is the desired size. If
necessary, make the window larger.

�������	
�
���
��	�����������

If you want to set the position or size of the GUI to an exact value, do the
following:

1 Select Property Inspector from the View menu or click the Property
Inspector button .

6-16

Setting the GUI Size

2 Scroll to the Units property and note whether the current setting is
characters or normalized. Click the button next to Units and then
change the setting to inches from the pop-up menu.

3 In the Property Inspector, click the + sign next to Position. The elements
of the component’s Position property are displayed.

4 Type the x and y coordinates of the point where you want the lower-left
corner of the GUI to appear, and its width and height.

5 Reset the Units property to its previous setting, either characters or
normalized.

Note Setting the Units property to characters (nonresizable GUIs) or
normalized (resizable GUIs) gives the GUI a more consistent appearance
across platforms. See “Cross-Platform Compatible Units” on page 6-103 for
more information.

6-17

6 Laying Out a GUIDE GUI

Adding Components to the GUI

In this section...

“Available Components” on page 6-19

“Adding Components to the GUIDE Layout Area” on page 6-22

“Defining User Interface Controls” on page 6-27

“Defining Panels and Button Groups” on page 6-43

“Defining Axes” on page 6-48

“Adding ActiveX Controls” on page 6-51

“Working with Components in the Layout Area” on page 6-53

“Locating and Moving Components” on page 6-57

“Resizing Components” on page 6-60

Other topics that may be of interest:

• “Aligning Components” on page 6-62

• “Setting Tab Order” on page 6-67

6-18

Adding Components to the GUI

Available Components
The component palette at the left side of the Layout Editor contains the
components that you can add to your GUI. You can display it with or without
names.

When you first open the Layout Editor, the component palette contains only
icons. To display the names of the GUI components, select Preferences from
the File menu, check the box next to Show names in component palette,
and click OK.

See “Creating Menus” on page 6-70 for information about adding menus to a
GUI.

Note This section provides information about using components to lay out a
GUI. For information about programming these components see Chapter 8,
“Programming a GUIDE GUI”.

6-19

6 Laying Out a GUIDE GUI

Component Icon Description

Push Button Push buttons generate an action when clicked.
For example, an OK button might apply settings
and close a dialog box. When you click a push
button, it appears depressed; when you release
the mouse button, the push button appears raised.

Toggle
Button

Toggle buttons generate an action and indicate
whether they are turned on or off. When you click
a toggle button, it appears depressed, showing
that it is on. When you release the mouse button,
the toggle button remains depressed until you
click it a second time. When you do so, the button
returns to the raised state, showing that it is off.
Use a button group to manage mutually exclusive
toggle buttons.

Radio Button Radio buttons are similar to check boxes, but
radio buttons are typically mutually exclusive
within a group of related radio buttons. That
is, when you select one button the previously
selected button is deselected. To activate a radio
button, click the mouse button on the object. The
display indicates the state of the button. Use a
button group to manage mutually exclusive radio
buttons.

Check Box Check boxes can generate an action when checked
and indicate their state as checked or not checked.
Check boxes are useful when providing the
user with a number of independent choices, for
example, displaying a toolbar.

Edit Text Edit text components are fields that enable users
to enter or modify text strings. Use edit text when
you want text as input. Users can enter numbers
but you must convert them to their numeric
equivalents.

6-20

Adding Components to the GUI

Component Icon Description

Static Text Static text controls display lines of text. Static
text is typically used to label other controls,
provide directions to the user, or indicate values
associated with a slider. Users cannot change
static text interactively.

Slider Sliders accept numeric input within a specified
range by enabling the user to move a sliding bar,
which is called a slider or thumb. Users move
the slider by clicking the slider and dragging it,
by clicking in the trough, or by clicking an arrow.
The location of the slider indicates the relative
location within the specified range.

List Box List boxes display a list of items and enable users
to select one or more items.

Pop-Up Menu Pop-up menus open to display a list of choices
when users click the arrow.

Axes Axes enable your GUI to display graphics such
as graphs and images. Like all graphics objects,
axes have properties that you can set to control
many aspects of its behavior and appearance.
See “Axes Properties” in the MATLAB Graphics
documentation and commands such as the
following for more information on axes objects:
plot, surf, line, bar, polar, pie, contour,
and mesh. See Functions — By Category in the
MATLAB Function Reference documentation for
a complete list.

6-21

6 Laying Out a GUIDE GUI

Component Icon Description

Panel Panels arrange GUI components into groups. By
visually grouping related controls, panels can
make the user interface easier to understand. A
panel can have a title and various borders.

Panel children can be user interface controls and
axes as well as button groups and other panels.
The position of each component within a panel
is interpreted relative to the panel. If you move
the panel, its children move with it and maintain
their positions on the panel.

Button Group Button groups are like panels but are used to
manage exclusive selection behavior for radio
buttons and toggle buttons.

ActiveX
Component

ActiveX components enable you to display ActiveX
controls in your GUI. They are available only on
the Microsoft Windows platform.

An ActiveX control can be the child only of a
figure, i.e., of the GUI itself. It cannot be the child
of a panel or button group.

See “ActiveX Control” on page 8-33 in this
document for an example. See “MATLAB COM
Client Support” in the MATLAB External
Interfaces documentation to learn more about
ActiveX controls.

Adding Components to the GUIDE Layout Area
This topic tells you how to place components in the GUIDE layout area and
give each component a unique identifier.

Note See “Creating Menus” on page 6-70 for information about adding menus
to a GUI. See “Creating Toolbars” on page 6-84 for information about working
with the toolbar.

6-22

Adding Components to the GUI

1 Place components in the layout area according to your design.

• Drag a component from the palette and drop it in the layout area.

• Click a component in the palette and move the cursor over the layout
area. The cursor changes to a cross. Click again to add the component in
its default size, or click and drag to size the component as you add it.

The components listed in the following table need additional considerations.

If You Are Adding... Then...

Panels or button groups See “Adding a Component to a
Panel or Button Group” on page
6-25.

ActiveX controls See “Adding ActiveX Controls” on
page 6-51.

See “Grid and Rulers” on page 6-65 for information about using the grid.

2 Assign a unique identifier to each component. Do this by setting the value
of the component Tag properties. See“Assigning an Identifier to Each
Component” on page 6-27 for more information.

3 Specify the look and feel of each component by setting the appropriate
properties. The following topics contain specific information.

• “Defining User Interface Controls” on page 6-27

• “Defining Panels and Button Groups” on page 6-43

• “Defining Axes” on page 6-48

• “Adding ActiveX Controls” on page 6-51

6-23

6 Laying Out a GUIDE GUI

This is an example of a GUI in the Layout Editor. Components in the Layout
Editor are not active. Chapter 7, “Saving and Running a GUIDE GUI”
describes how to generate a functioning GUI.

Using Coordinates to Place Components
The status bar at the bottom of the GUIDE Layout Editor displays:

• Current Point — The current location of the mouse relative to the lower
left corner of the grid area in the Layout Editor.

• Position — The Position property of the selected component, a 4-element
vector: [distance from left, distance from bottom, width, height], where

6-24

Adding Components to the GUI

distances are relative to the parent figure, panel, or button group. All
values are given in pixels. Rulers also display pixels.

If you select a single component and move it, the first two elements of the
position vector (distance from left, distance from bottom) are updated as you
move the component. If you resize the component, the last two elements of
the position vector (width, height) are updated as you change the size. The
first two elements may also change if you resize the component such that the
position of its lower left corner changes. If no components are selected, the
position vector is that of the figure.

For more information, see “Using Coordinate Readouts” on page 6-57.

Adding a Component to a Panel or Button Group
To add a component to a panel or button group, select the component in the
component palette then move the cursor over the desired panel or button
group. The position of the cursor determines the component’s parent.

6-25

6 Laying Out a GUIDE GUI

GUIDE highlights the potential parent as shown in the following figure. The
highlight indicates that if you drop the component or click the cursor, the
component will be a child of the highlighted panel, button group, or figure.

'��(���(�

�����

Note If the component is not entirely contained in the panel or button group,
it appears to be clipped in the Layout Editor. When you run the GUI, the
entire component is displayed and straddles the panel or button group border.
The component is nevertheless a child of the panel and behaves accordingly.
You can use the Object Browser to determine the child objects of a panel or
button group. “Viewing the Object Hierarchy” on page 6-100 tells you how.

Note Assign a unique identifier to each component in your panel or button
group by setting the value of its Tag property. See “Assigning an Identifier to
Each Component” on page 6-27 for more information.

6-26

Adding Components to the GUI

Assigning an Identifier to Each Component
Use the Tag property to assign each component a unique meaningful string
identifier.

When you place a component in the layout area, GUIDE assigns a default
value to the Tag property. Before saving the GUI, replace this value with a
string that reflects the role of the component in the GUI.

The string value you assign Tag is used in the M-file code to identify the
component and must be unique in the GUI. To set Tag:

1 Select Property Inspector from the View menu or click the Property
Inspector button .

2 In the layout area, select the component for which you want to set Tag.

3 In the Property Inspector, select Tag and then replace the value with the
string you want to use as the identifier. In the following figure, Tag is set
to mybutton.

Defining User Interface Controls
User interface controls include push buttons, toggle buttons, sliders, radio
buttons, edit text controls, static text controls, pop-up menus, check boxes,
and list boxes.

To define user interface controls, you must set certain properties. To do this:

1 Use the Property Inspector to modify the appropriate properties. Open the
Property Inspector by selecting Property Inspector from the View menu

or by clicking the Property Inspector button .

6-27

6 Laying Out a GUIDE GUI

2 In the layout area, select the component you are defining.

Subsequent topics describe commonly used properties of user interface
controls and offer a simple example for each kind of control:

• “Commonly Used Properties” on page 6-28

• “Push Button” on page 6-29

• “Slider” on page 6-31

• “Radio Button” on page 6-32

• “Check Box” on page 6-34

• “Edit Text” on page 6-35

• “Static Text” on page 6-36

• “Pop-Up Menu” on page 6-37

• “List Box” on page 6-39

• “Toggle Button” on page 6-41

Note See “Available Components” on page 6-19 for descriptions of these
components. See “Examples: Programming GUIDE GUI Components” on
page 8-20 for basic examples of programming these components.

Commonly Used Properties
The most commonly used properties needed to describe a user interface
control are shown in the following table. Instructions for a particular control
may also list properties that are specific to that control.

Property Value Description

Enable on, inactive, off.
Default is on.

Determines whether the
control is available to
the user

6-28

Adding Components to the GUI

Property Value Description

Max Scalar. Default is 1. Maximum value.
Interpretation depends
on the type of
component.

Min Scalar. Default is 0. Minimum value.
Interpretation depends
on the type of
component.

Position 4-element vector:
[distance from left,
distance from bottom,
width, height].

Size of the component
and its location relative
to its parent.

String String. Can also be a
cell array or character
array of strings.

Component label. For
list boxes and pop-up
menus it is a list of the
items.

Units characters,
centimeters, inches,
normalized, pixels,
points. Default is
characters.

Units of measurement
used to interpret the
Position property
vector

Value Scalar or vector Value of the component.
Interpretation depends
on the type of
component.

For a complete list of properties and for more information about the properties
listed in the table, see Uicontrol Properties in the MATLAB documentation.
Properties needed to control GUI behavior are discussed in Chapter 8,
“Programming a GUIDE GUI”

Push Button
To create a push button with label Button 1, as shown in this figure:

6-29

6 Laying Out a GUIDE GUI

• Specify the push button label by setting the String property to the desired
label, in this case, Button 1.

To display the & character in a label, use two & characters in the string.
The words remove, default, and factory (case sensitive) are reserved.
To use one of these as a label, prepend a backslash (\) to the string. For
example, \remove yields remove.

The push button accommodates only a single line of text. If you specify
more than one line, only the first line is shown. If you create a push
button that is too narrow to accommodate the specified String, MATLAB
truncates the string with an ellipsis.

• If you want to set the position or size of the component to an exact value,
then modify its Position property. See “Locating and Moving Components”
on page 6-57 and “Resizing Components” on page 6-60 for details.

• To add an image to a push button, assign the button’s CData property an
m-by-n-by-3 array of RGB values that defines a truecolor image. You must
do this programmatically in the opening function of the GUI M-file. For

6-30

Adding Components to the GUI

example, the array img defines a 16-by-64-by-3 truecolor image using
random values between 0 and 1 (generated by rand).

img = rand(16,64,3);
set(handles.pushbutton1,'CData',img);

where pushbutton1 is the push button’s Tag property.

Note Create your own icon with the icon editor described in “Icon Editor”
on page 15-29. See ind2rgb for information on converting a matrix X and
corresponding colormap, i.e., an (X, MAP) image, to RGB (truecolor) format.

Slider
To create a slider as shown in this figure:

• Specify the range of the slider by setting its Min property to the minimum
value of the slider and its Max property to the maximum value. The Min
property must be less than Max.

• Specify the value indicated by the slider when it is created by setting the
Value property to the appropriate number. This number must be less than
or equal to Max and greater than or equal to Min. If you specify Value
outside the specified range, the slider is not displayed.

• Control the amount the slider Value changes when a user clicks the arrow
button to produce a minimum step or the slider trough to produce a

6-31

6 Laying Out a GUIDE GUI

maximum step by setting the SliderStep property. Specify SliderStep as
a two-element vector, [min_step,max_step], where each value is in the
range [0, 1] to indicate a percentage of the range.

• If you want to set the position or size of the component to an exact value,
then modify its Position property. See “Locating and Moving Components”
on page 6-57 and “Resizing Components” on page 6-60 for details.

Note On Mac platforms, the height of a horizontal slider is constrained.
If the height you set in the position vector exceeds this constraint, the
displayed height of the slider is the maximum allowed. The height element
of the position vector is not changed.

Note The slider component provides no text description or data entry
capability. Use a “Static Text” on page 6-36 component to label the slider.
Use an “Edit Text” on page 6-35 component to enable a user to provide a
value for the slider.

Radio Button
To create a radio button with label Indent nested functions, as shown
in this figure:

6-32

Adding Components to the GUI

• Specify the radio button label by setting the String property to the desired
label, in this case, Indent nested functions.

To display the & character in a label, use two & characters in the string.
The words remove, default, and factory (case sensitive) are reserved.
To use one of these as a label, prepend a backslash (\) to the string. For
example, \remove yields remove.

The radio button accommodates only a single line of text. If you specify
more than one line, only the first line is shown. If you create a radio
button that is too narrow to accommodate the specified String, MATLAB
truncates the string with an ellipsis.

• Create the radio button with the button selected by setting its Value
property to the value of its Max property (default is 1). Set Value to Min
(default is 0) to leave the radio button unselected. Correspondingly, when
the user selects the radio button, MATLAB sets Value to Max. MATLAB
sets Value to Min when the user deselects it.

• If you want to set the position or size of the component to an exact value,
then modify its Position property. See “Locating and Moving Components”
on page 6-57 and “Resizing Components” on page 6-60 for details.

• To add an image to a radio button, assign the button’s CData property an
m-by-n-by-3 array of RGB values that defines a truecolor image. You must
do this programmatically in the opening function of the GUI M-file. For
example, the array img defines a 16-by-24-by-3 truecolor image using
random values between 0 and 1 (generated by rand).

img = rand(16,24,3);
set(handles.radiobutton1,'CData',img);

6-33

6 Laying Out a GUIDE GUI

Note To manage exclusive selection of radio buttons and toggle buttons,
put them in a button group. See “Button Group” on page 6-46 for more
information.

Check Box
To create a check box with label Display file extension that is initially
checked, as shown in this figure:

• Specify the check box label by setting the String property to the desired
label, in this case, Display file extension.

To display the & character in a label, use two & characters in the string.
The words remove, default, and factory (case sensitive) are reserved.
To use one of these as a label, prepend a backslash (\) to the string. For
example, \remove yields remove.

The check box accommodates only a single line of text. If you specify a
component width that is too small to accommodate the specified String,
MATLAB truncates the string with an ellipsis.

6-34

Adding Components to the GUI

• Create the check box with the box checked by setting the Value property
to the value of the Max property (default is 1). Set Value to Min (default is
0) to leave the box unchecked. Correspondingly, when the user clicks the
check box, MATLAB sets Value to Max when the user checks the box and
to Min when the user unchecks it.

• If you want to set the position or size of the component to an exact value,
then modify its Position property. See “Locating and Moving Components”
on page 6-57 and “Resizing Components” on page 6-60 for details.

Edit Text
To create an edit text component that displays the initial text Enter your
name here, as shown in this figure:

• Specify the text to be displayed when the edit text component is created
by setting the String property to the desired string, in this case, Enter
your name here.

To display the & character in a label, use two & characters in the string.
The words remove, default, and factory (case sensitive) are reserved.
To use one of these as a label, prepend a backslash (\) to the string. For
example, \remove yields remove.

6-35

6 Laying Out a GUIDE GUI

• To enable multiple-line input, specify the Max and Min properties so that
their difference is greater than 1. For example, Max = 2, Min = 0. Max
default is 1, Min default is 0. MATLAB wraps the string and adds a scroll
bar if necessary.

If Max-Min is less than or equal to 1, the edit text component admits only a
single line of input. If you specify a component width that is too small to
accommodate the specified string, MATLAB displays only part of the string.
The user can use the arrow keys to move the cursor over the entire string.

• If you want to set the position or size of the component to an exact value,
then modify its Position property. See “Locating and Moving Components”
on page 6-57 and “Resizing Components” on page 6-60 for details.

Static Text
To create a static text component with text Select a data set, as shown in
this figure:

• Specify the text that appears in the component by setting the component
String property to the desired text, in this case Select a data set.

6-36

Adding Components to the GUI

To display the & character in a list item, use two & characters in the string.
The words remove, default, and factory (case sensitive) are reserved.
To use one of these as a label, prepend a backslash (\) to the string. For
example, \remove yields remove.

If your component is not wide enough to accommodate the specified String,
MATLAB wraps the string.

• If you want to set the position or size of the component to an exact value,
then modify its Position property. See “Locating and Moving Components”
on page 6-57 and “Resizing Components” on page 6-60 for details.

Pop-Up Menu
To create a pop-up menu (also known as a drop-down menu or combo box)
with items one, two, three, and four, as shown in this figure:

• Specify the pop-up menu items to be displayed by setting the String
property to the desired items. Click the

6-37

6 Laying Out a GUIDE GUI

button to the right of the property name to open the Property Inspector
editor.

To display the & character in a menu item, use two & characters in the
string. The words remove, default, and factory (case sensitive) are
reserved. To use one of these as a label, prepend a backslash (\) to the
string. For example, \remove yields remove.

If the width of the component is too small to accommodate one or more of
the specified strings, MATLAB truncates those strings with an ellipsis.

• To select an item when the component is created, set Value to a scalar
that indicates the index of the selected list item, where 1 corresponds to
the first item in the list. If you set Value to 2, the menu looks like this
when it is created:

6-38

Adding Components to the GUI

• If you want to set the position and size of the component to exact values,
then modify its Position property. See “Locating and Moving Components”
on page 6-57 and “Resizing Components” on page 6-60 for details. The
height of a pop-up menu is determined by the font size. The height you
set in the position vector is ignored.

Note The pop-up menu does not provide for a label. Use a “Static Text” on
page 6-36 component to label the pop-up menu.

List Box
To create a list box with items one, two, three, and four, as shown in this
figure:

• Specify the list of items to be displayed by setting the String property to
the desired list. Use the Property Inspector editor to enter the list. You can

open the editor by clicking the button to the right of the property name.

6-39

6 Laying Out a GUIDE GUI

To display the & character in a label, use two & characters in the string.
The words remove, default, and factory (case sensitive) are reserved.
To use one of these as a label, prepend a backslash (\) to the string. For
example, \remove yields remove.

If the width of the component is too small to accommodate one or more of
the specified strings, MATLAB truncates those strings with an ellipsis.

• Specify selection by using the Value property together with the Max and
Min properties.

- To select a single item when the component is created, set Value to
a scalar that indicates the index of the selected list item, where 1
corresponds to the first item in the list.

- To select more than one item when the component is created, set Value
to a vector of indices of the selected items. Value = [1,3] results in the
following selection.

6-40

Adding Components to the GUI

To enable selection of more than one item, you must specify the Max and
Min properties so that their difference is greater than 1. For example,
Max = 2, Min = 0. Max default is 1, Min default is 0.

- If you want no initial selection, set the Max and Min properties to enable
multiple selection, i.e., Max - Min > 1, and then set the Value property
to an empty matrix [].

• If the list box is not large enough to display all list entries, you can set the
ListBoxTop property to the index of the item you want to appear at the
top when the component is created.

• If you want to set the position or size of the component to an exact value,
then modify its Position property. See “Locating and Moving Components”
on page 6-57 and “Resizing Components” on page 6-60 for details.

Note The list box does not provide for a label. Use a “Static Text” on page
6-36 component to label the list box.

Toggle Button
To create a toggle button with label Left/Right Tile, as shown in this figure:

• Specify the toggle button label by setting its String property to the desired
label, in this case, Left/Right Tile.

6-41

6 Laying Out a GUIDE GUI

To display the & character in a label, use two & characters in the string.
The words remove, default, and factory (case sensitive) are reserved.
To use one of these as a label, prepend a backslash (\) to the string. For
example, \remove yields remove.

The toggle button accommodates only a single line of text. If you specify
more than one line, only the first line is shown. If you create a toggle
button that is too narrow to accommodate the specified String, MATLAB
truncates the string with an ellipsis.

• Create the toggle button with the button selected (depressed) by setting
its Value property to the value of its Max property (default is 1). Set
Value to Min (default is 0) to leave the toggle button unselected (raised).
Correspondingly, when the user selects the toggle button, MATLAB sets
Value to Max. MATLAB sets Value to Min when the user deselects it. The
following figure shows the toggle button in the depressed position.

• If you want to set the position or size of the component to an exact value,
then modify its Position property. See “Locating and Moving Components”
on page 6-57 and “Resizing Components” on page 6-60 for details.

• To add an image to a toggle button, assign the button’s CData property
an m-by-n-by-3 array of RGB values that defines a truecolor image. You
must do this programmatically in the opening function of the GUI M-file.
For example, the array img defines a 16-by-64-by-3 truecolor image using
random values between 0 and 1 (generated by rand).

6-42

Adding Components to the GUI

img = rand(16,64,3);
set(handles.togglebutton1,'CData',img);

where togglebutton1 is the toggle button’s Tag property.

Note To manage exclusive selection of radio buttons and toggle buttons,
put them in a button group. See “Button Group” on page 6-46 for more
information.

Defining Panels and Button Groups
Panels and button groups are containers that arrange GUI components into
groups. If you move the panel or button group, its children move with it and
maintain their positions relative to the panel or button group.

To define panels and button groups, you must set certain properties. To do
this:

1 Use the Property Inspector to modify the appropriate properties. Open the
Property Inspector by selecting Property Inspector from the View menu
or by clicking the Property Inspector button .

2 In the layout area, select the component you are defining.

Note See “Available Components” on page 6-19 for descriptions of these
components. See “Examples: Programming GUIDE GUI Components” on
page 8-20 for basic examples of programming these components.

Subsequent topics describe commonly used properties of panels and button
groups and offer a simple example for each component.

6-43

6 Laying Out a GUIDE GUI

• “Commonly Used Properties” on page 6-44

• “Panel” on page 6-44

• “Button Group” on page 6-46

Commonly Used Properties
The most commonly used properties needed to describe a panel or button
group are shown in the following table:

Property Values Description

Position 4-element vector:
[distance from left,
distance from bottom,
width, height].

Size of the component
and its location relative
to its parent.

Title String Component label.

TitlePosition lefttop, centertop,
righttop, leftbottom,
centerbottom,
rightbottom. Default
is lefttop.

Location of title string
in relation to the panel
or button group.

Units characters,
centimeters, inches,
normalized, pixels,
points. Default is
characters.

Units of measurement
used to interpret the
Position property
vector

For a complete list of properties and for more information about the properties
listed in the table, see the Uipanel Properties and Uibuttongroup Properties
in the MATLAB reference documentation. Properties needed to control GUI
behavior are discussed in theChapter 8, “Programming a GUIDE GUI”.

Panel
To create a panel with title My Panel as shown in the following figure:

6-44

Adding Components to the GUI

• Specify the panel title by setting the Title property to the desired string,
in this case My Panel.

To display the & character in the title, use two & characters in the string.
The words remove, default, and factory (case sensitive) are reserved. To
use one of these as a label, prepend a backslash (\) to the string. For
example, \remove yields remove.

• Specify the location of the panel title by selecting one of the available
TitlePosition property values from the pop-up menu, in this case
lefttop. You can position the title at the left, middle, or right of the top or
bottom of the panel.

6-45

6 Laying Out a GUIDE GUI

• If you want to set the position or size of the panel to an exact value, then
modify its Position property. See “Locating and Moving Components” on
page 6-57 and “Resizing Components” on page 6-60 for details.

Note For information about adding components to a panel, see “Adding a
Component to a Panel or Button Group” on page 6-25.

Button Group
To create a button group with title My Button Group as shown in the
following figure:

6-46

Adding Components to the GUI

• Specify the button group title by setting the Title property to the desired
string, in this case My Button Group.

To display the & character in the title, use two & characters in the string.
The words remove, default, and factory (case sensitive) are reserved. To
use one of these as a label, prepend a backslash (\) to the string. For
example, \remove yields remove.

• Specify the location of the button group title by selecting one of the
available TitlePosition property values from the pop-up menu, in this
case lefttop. You can position the title at the left, middle, or right of the
top or bottom of the button group.

• If you want to set the position or size of the button group to an exact value,
then modify its Position property. See “Locating and Moving Components”
on page 6-57 and “Resizing Components” on page 6-60 for details.

Note For information about adding components to a button group, see
“Adding a Component to a Panel or Button Group” on page 6-25.

6-47

6 Laying Out a GUIDE GUI

Defining Axes
Axes enable your GUI to display graphics such as graphs and images using
commands such as: plot, surf, line, bar, polar, pie, contour, and mesh.

To define an axes, you must set certain properties. To do this:

1 Use the Property Inspector to modify the appropriate properties. Open the
Property Inspector by selecting Property Inspector from the View menu
or by clicking the Property Inspector button .

2 In the layout area, select the component you are defining.

Note See“Available Components” on page 6-19 for a description of this
component.

Subsequent topics describe commonly used properties of axes and offer a
simple example.

• “Commonly Used Properties” on page 6-48

• “Axes” on page 6-49

Commonly Used Properties
The most commonly used properties needed to describe an axes are shown
in the following table:

6-48

Adding Components to the GUI

Property Values Description

Position 4-element vector:
[distance from left,
distance from bottom,
width, height].

Size of the component
and its location relative
to its parent.

Units normalized,
centimeters,
characters, inches,
pixels, points.
Default is normalized.

Units of measurement
used to interpret
position vector

For a complete list of properties and for more information about the properties
listed in the table, see Axes Properties in the MATLAB documentation.
Properties needed to control GUI behavior are discussed in Chapter 8,
“Programming a GUIDE GUI”.

See commands such as the following for more information on axes
objects: plot, surf, line, bar, polar, pie, contour and mesh. See
Functions — By Category in the MATLAB Function Reference documentation
for a complete list.

Axes
To create an axes as shown in the following figure:

6-49

6 Laying Out a GUIDE GUI

• Allow for tick marks to be placed outside the box that appears in the Layout
Editor. The axes above looks like this in the layout editor; placement allows
space at the left and bottom of the axes for tick marks. Functions that draw
in the axes update the tick marks appropriately.

6-50

Adding Components to the GUI

• Use the title, xlabel, ylabel, zlabel, and text functions in the GUI
M-file to label an axes component. For example,

xlh = (axes_handle,'Years')

labels the X-axis as Years. The handle of the X-axis label is xlh. See
“Callback Syntax and Arguments” on page 8-12 for information about
determining the axes handle.

The words remove, default, and factory (case sensitive) are reserved. To
use one of these in component text, prepend a backslash (\) to the string.
For example, \remove yields remove.

• If you want to set the position or size of the axes to an exact value, then
modify its Position property. See “Locating and Moving Components” on
page 6-57 and “Resizing Components” on page 6-60 for details.

Adding ActiveX Controls
When you drag an ActiveX component from the component palette into the
layout area, GUIDE opens a dialog box, similar to the following, that lists the
registered ActiveX controls on your system.

Note If MATLAB is not installed locally on your computer — for example, if
you are running MATLAB over a network — you might not find the ActiveX
control described in this example. To register the control, see “Registering
Controls and Servers” in the MATLAB External Interfaces documentation.

6-51

6 Laying Out a GUIDE GUI

1 Select the desired ActiveX control. The right panel shows a preview of
the selected control.

2 Click Create. The control appears as a small box in the Layout Editor.

6-52

Adding Components to the GUI

3 Resize the control to approximately the size of the square shown in the
preview pane. You can do this by clicking and dragging a corner of the
control, as shown in the following figure.

See “ActiveX Control” on page 8-33 for information about programming a
sample ActiveX control and an example.

Working with Components in the Layout Area
This topic provides basic information about selecting, copying, pasting, and
deleting components in the layout area.

• “Selecting Components” on page 6-54

• “Copying, Cutting, and Clearing Components” on page 6-54

• “Pasting and Duplicating Components” on page 6-55

• “Front-to-Back Positioning” on page 6-55

Other topics that may be of interest are

• “Locating and Moving Components” on page 6-57

• “Resizing Components” on page 6-60

• “Aligning Components” on page 6-62

• “Setting Tab Order” on page 6-67

6-53

6 Laying Out a GUIDE GUI

Selecting Components
You can select components in the layout area in the following ways:

• Click a single component to select it.

• Press Ctrl+A to select all child objects of the figure. This does not select
components that are child objects of panels or button groups.

• Click and drag the cursor to create a rectangle that encloses the components
you want to select. If the rectangle encloses a panel or button group, only
the panel or button group is selected, not its children. If the rectangle
encloses part of a panel or button group, only the components within the
rectangle that are child objects of the panel or button group are selected.

• Select multiple components using the Shift and Ctrl keys.

In some cases, a component may lie outside its parent’s boundary. Such a
component is not visible in the Layout Editor but can be selected by dragging
a rectangle that encloses it or by selecting it in the Object Browser. Such a
component is visible in the active GUI.

See “Viewing the Object Hierarchy” on page 6-100 for information about the
Object Browser.

Note You can select multiple components only if they have the same parent.
To determine the child objects of a figure, panel, or button group, use the
Object Browser.

Copying, Cutting, and Clearing Components
Use standard menu and pop-up menu commands, toolbar icons, keyboard
keys, and shortcut keys to copy, cut, and clear components.

Copying. Copying places a copy of the selected components on the clipboard.
A copy of a panel or button group includes its children.

Cutting. Cutting places a copy of the selected components on the clipboard
and deletes them from the layout area. If you cut a panel or button group, you
also cut its children.

6-54

Adding Components to the GUI

Clearing. Clearing deletes the selected components from the layout area. It
does not place a copy of the components on the clipboard. If you clear a panel
or button group, you also clear its children.

Pasting and Duplicating Components

Pasting. Use standard menu and pop-up menu commands, toolbar icons,
and shortcut keys to paste components. GUIDE pastes the contents of the
clipboard to the location of the last mouse click. It positions the upper-left
corner of the contents at the mouse click.

Consecutive pastes place each copy to the lower right of the last one.

Duplicating. Select one or more components that you want to duplicate,
then do one of the following:

• Copy and paste the selected components as described above.

• Select Duplicate from the Edit menu or the pop-up menu. Duplicate
places the copy to the lower right of the original.

• Right-click and drag the component to the desired location. The position
of the cursor when you drop the components determines the parent of all
the selected components. Look for the highlight as described in “Adding a
Component to a Panel or Button Group” on page 6-25.

Front-to-Back Positioning
MATLAB figures maintain separate stacks that control the front-to-back
positioning for different kinds of components:

• User interface controls such as buttons, sliders, and pop-up menus

• Panels, button groups, and axes

• ActiveX controls

You can control the front-to-back positioning of components that overlap only
if those components are in the same stack. For overlapping components that
are in different stacks:

6-55

6 Laying Out a GUIDE GUI

• User interface controls always appear on top of panels, button groups,
axes that they overlap. ActiveX controls appear on top of everything they
overlap.

• Panels, button groups, and axes always appear on top of ActiveX controls.

The Layout Editor provides four operations that enable you to control
front-to-back positioning. All are available from the Layout menu, which is
shown in the following figure.

• Bring to Front — Move the selected object(s) in front of nonselected
objects (available from the right-click context menu, the Layout menu, or
the Ctrl+F shortcut).

• Send to Back — Move the selected object(s) behind nonselected objects
(available from the right-click context menu, the Layout menu, or the
Ctrl+B shortcut).

• Bring Forward — Move the selected object(s) forward by one level, i.e., in
front of the object directly forward of it, but not in front of all objects that
overlay it (available from the Layout menu).

• Send Backward — Move the selected object(s) back by one level, i.e.,
behind the object directly in back of it, but not behind all objects that are
behind it (available from the Layout menu).

Note Changing front-to-back positioning of components also changes their
tab order. See “Setting Tab Order” on page 6-67 for more information.

6-56

Adding Components to the GUI

Locating and Moving Components
You can locate or move components in one of the following ways:

• “Using Coordinate Readouts” on page 6-57

• “Dragging Components” on page 6-58

• “Using Arrow Keys to Move Components” on page 6-58

• “Setting the Component’s Position Property” on page 6-58

Another topic that may be of interest is

• “Aligning Components” on page 6-62

Using Coordinate Readouts
Coordinate readouts indicate where a component is placed and where the
mouse pointer is located. Use these readouts to position and align components
manually. The coordinate readout in the lower right corner of the Layout
Editor shows the position of a selected component or components as [xleft
ybottom width height]. These values are displayed in units of pixels,
regardless of the coordinate units you select for components.

If you drag or resize the component, the readout updates accordingly. The
readout to the left of the component position readout displays the current
mouse position, also in pixels. The following readout example shows a
selected component that has a position of [35, 30, 180, 180], a 180-by-180
pixel object with a lower left corner at x=35 and y=30, and locates the mouse
position at [200, 30].

When you select multiple objects, the Position readout displays numbers for
x, y, width and height only if the objects have the same respective values; in
all other cases it displays 'MULTI'. For example, if you select two checkboxes,
one with Position [250, 140, 76, 20] pixels and the other with position
[250, 190, 68, 20] pixels, the Position readout indicates [250, MULTI,
MULTI, 20].

6-57

6 Laying Out a GUIDE GUI

Dragging Components
Select one or more components that you want to move, then drag them to the
desired position and drop them. You can move components from the figure
into a panel or button group. You can move components from a panel or button
group into the figure or into another panel or button group.

The position of the cursor when you drop the components also determines the
parent of all the selected components. Look for the highlight as described in
“Adding a Component to a Panel or Button Group” on page 6-25.

In some cases, one or more of the selected components may lie outside its
parent’s boundary. Such a component is not visible in the Layout Editor but
can be selected by dragging a rectangle that encloses it or by selecting it in
the Object Browser. Such a component is visible in the active GUI.

See “Viewing the Object Hierarchy” on page 6-100 for information about the
Object Browser.

Note To select multiple components, they must have the same parent. That
is, they must be contained in the same figure, panel, or button group.

Using Arrow Keys to Move Components
Select one or more components that you want to move, then press and hold
the arrow keys until the components have moved to the desired position. Note
that the components remain children of the figure, panel, or button group
from which you move them, even if they move outside its boundaries.

Setting the Component’s Position Property
Select one or more components that you want to move. Then open the Property
Inspector from the View menu or by clicking the Property Inspector button .

1 In the Property Inspector, scroll to the Units property and note whether
the current setting is characters or normalized. Click the button next to
Units and then change the setting to inches from the pop-up menu.

6-58

Adding Components to the GUI

2 Click the + sign next to Position. The Property Inspector displays the
elements of the Position property.

3 If you have selected

• Only one component, type the x and y coordinates of the point where you
want the lower-left corner of the component to appear.

• More than one component, type either the x or the y coordinate to align
the components along that dimension.

4 Reset the Units property to its previous setting, either characters or
normalized.

6-59

6 Laying Out a GUIDE GUI

Note Setting the Units property to characters (nonresizable GUIs) or
normalized (resizable GUIs) gives the GUI a more consistent appearance
across platforms. See “Cross-Platform Compatible Units” on page 6-103 for
more information.

Resizing Components
You can resize components in one of the following ways:

• “Dragging a Corner of the Component” on page 6-60

• “Setting the Component’s Position Property” on page 6-60

Dragging a Corner of the Component
Select the component you want to resize. Click one of the corner handles and
drag it until the component is the desired size.

Setting the Component’s Position Property
Select one or more components that you want to resize. Then open the
Property Inspector from the View menu or by clicking the Property Inspector
button .

1 In the Property Inspector, scroll to the Units property and note whether
the current setting is characters or normalized. Click the button next to
Units and then change the setting to inches from the pop-up menu.

6-60

Adding Components to the GUI

2 Click the + sign next to Position. The Property Inspector displays the
elements of the Position property.

3 Type the width and height you want the components to be.

4 Reset the Units property to its previous setting, either characters or
normalized.

Note To select multiple components, they must have the same parent.
That is, they must be contained in the same figure, panel, or button group.
See “Selecting Components” on page 6-54 for more information. Setting the
Units property to characters (nonresizable GUIs) or normalized (resizable
GUIs) gives the GUI a more consistent appearance across platforms. See
“Cross-Platform Compatible Units” on page 6-103 for more information.

6-61

6 Laying Out a GUIDE GUI

Aligning Components

In this section...

“Alignment Tool” on page 6-62

“Property Inspector” on page 6-64

“Grid and Rulers” on page 6-65

“Guide Lines” on page 6-66

Alignment Tool
The Alignment Tool enables you to position objects with respect to each other
and to adjust the spacing between selected objects. The specified alignment
operations apply to all components that are selected when you press the
Apply button.

Note To select multiple components, they must have the same parent. That
is, they must be contained in the same figure, panel, or button group. See
“Selecting Components” on page 6-54 for more information.

6-62

Aligning Components

The alignment tool provides two types of alignment operations:

• Align — Align all selected components to a single reference line.

• Distribute — Space all selected components uniformly with respect to
each other.

Both types of alignment can be applied in the vertical and horizontal
directions. In many cases, it is better to apply alignments independently to
the vertical and horizontal using two separate steps.

Align Options
There are both vertical and horizontal align options. Each option aligns
selected components to a reference line, which is determined by the bounding
box that encloses the selected objects. For example, the following picture of
the layout area shows the bounding box (indicated by the dashed line) formed
by three selected push buttons.

All of the align options (vertical top, center, bottom and horizontal left, center,
right) place the selected components with respect to the corresponding edge
(or center) of this bounding box.

6-63

6 Laying Out a GUIDE GUI

Distribute Options
Distributing components adds equal space between all components in the
selected group. The distribute options operate in two different modes:

• Equally space selected components within the bounding box (default)

• Space selected components to a specified value in pixels (check Set spacing
and specify a pixel value)

Both modes enable you to specify how the spacing is measured, as indicated
by the button labels on the alignment tool. These options include spacing
measured with respect to the following edges:

• Vertical — inner, top, center, and bottom

• Horizontal — inner, left, center, and right

Property Inspector
The Property Inspector enables you to align components by setting their
Position properties. A component’s Position property is a 4-element vector
that specifies the location of the component on the GUI and its size: [distance
from left, distance from bottom, width, height]. The values are given in the
units specified by the Units property of the component.

1 Select the components you want to align. See “Selecting Components” on
page 6-54 for information.

2 Select Property Inspector from the View menu or click the Property
Inspector button .

3 In the Property Inspector, scroll to the Units property and note its current
setting, then change the setting to inches.

4 Scroll to the Position property. A null value means that the element
differs in value for the different components. This figure shows the
Position property for multiple components of the same size.

6-64

Aligning Components

5 Change the value of x to align their left sides. Change the value of y to
align their bottom edges. For example, setting x to 2.0 aligns the left sides
of the components 2 inches from the left side of the GUI.

6 When the components are aligned, change the Units property back to its
original setting.

Grid and Rulers
The layout area displays a grid and rulers to facilitate component layout.
Grid lines are spaced at 50-pixel intervals by default and you can select from
a number of other values ranging from 10 to 200 pixels. You can optionally
enable snap-to-grid, which causes any object that is moved close to a grid line
to jump to that line. Snap-to-grid works with or without a visible grid.

Use the Grid and Rulers dialog (select Grid and Rulers from the Tools
menu) to:

• Control visibility of rulers, grid, and guide lines

6-65

6 Laying Out a GUIDE GUI

• Set the grid spacing

• Enable or disable snap-to-grid

Guide Lines
The Layout Editor has both vertical and horizontal snap-to guide lines.
Components snap to the line when you move them close to the line.

Guide lines are useful when you want to establish a reference for component
alignment at an arbitrary location in the Layout Editor.

Creating Guide Lines
To create a guide line, click the top or left ruler and drag the line into the
layout area.

6-66

Setting Tab Order

Setting Tab Order
A GUI’s tab order is the order in which components of the GUI acquire focus
when a user presses the Tab key on the keyboard. Focus is generally denoted
by a border or a dotted border.

You can set, independently, the tab order of components that have the same
parent. The GUI figure and each panel and button group in it has its own tab
order. For example, you can set the tab order of components that have the
figure as a parent. You can also set the tab order of components that have a
panel or button group as a parent.

If, in tabbing through the components at the figure level, a user tabs to a panel
or button group, then subsequent tabs sequence through the components of
the panel or button group before returning to the level from which the panel
or button group was reached.

Note Axes cannot be tabbed. From GUIDE, you cannot include ActiveX
components in the tab order.

When you create a GUI, GUIDE sets the tab order at each level to be the
order in which you add components to that level in the Layout Editor. This
may not be the best order for the user.

Note Tab order also affects the stacking order of components. If components
overlap, those that appear lower in the tabbing order, are drawn on top of
those that appear higher in the order. See “Front-to-Back Positioning” on page
6-55 for more information.

6-67

6 Laying Out a GUIDE GUI

The figure in the following GUI contains an axes component, a slider, a panel,
static text, and a pop-up menu. Of these, only the slider, the panel, and the
pop-up menu at the figure level can be tabbed. The panel contains three
push buttons, which can all be tabbed.

6-68

Setting Tab Order

To examine and change the tab order of the panel components, click the panel
background to select it, then select Tab Order Editor in the Tools menu
of the Layout Editor.

The Tab Order Editor displays the panel’s components in their current tab
order. To change the tab order, select a component and press the up or down
arrow to move the component up or down in the list. If you set the tab order
for the three components in the example to be

1 Surf push button

2 Contour push button

3 Mesh push button

the user first tabs to the Surf push button, then to the Contour push button,
and then to the Mesh push button. Subsequent tabs sequence through the
remaining components at the figure level.

6-69

6 Laying Out a GUIDE GUI

Creating Menus

In this section...

“Menus for the Menu Bar” on page 6-71

“Context Menus” on page 6-79

You can create both types of menus using the Menu Editor. Access the Menu
Editor from the Tools menu or click the Menu Editor button .

6-70

Creating Menus

Note In general, programming conventions described for components in
Chapter 8, “Programming a GUIDE GUI” also apply to menu items. See
“Menu Item” on page 8-41 and “Updating a Menu Item Check” on page 8-42
for information about programming and basic examples.

Menus for the Menu Bar
When you create a drop-down menu, GUIDE adds its title to the GUI menu
bar. You can then create menu items for that menu. Each menu item can
have a cascading menu, also known as a submenu, and these items can have
cascading menus, and so on.

Adding Standard Menus to the Menu Bar
The figure MenuBar property controls whether your GUI displays the
MATLAB standard menus on the menu bar. GUIDE initially sets the value
of MenuBar to none. If you want your GUI to display the MATLAB standard
menus, use the Property Inspector to set MenuBar to figure.

• If the value of MenuBar is none, GUIDE automatically adds a menu bar that
displays only the menus you create.

• If the value of MenuBar is figure, the GUI displays the MATLAB standard
menus and GUIDE adds the menus you create to this menu bar.

6-71

6 Laying Out a GUIDE GUI

Creating a Menu

1 Start a new menu by clicking the New Menu button in the toolbar. A menu
title, Untitled 1, appears in the left pane of the dialog box.

Note By default, GUIDE selects the Menu Bar tab when you open the
Menu Editor.

6-72

Creating Menus

2 Click the menu title to display a selection of menu properties in the right
pane.

3 Fill in the Label and Tag fields for the menu. For example, set Label to
File and set Tag to file_menu. Click outside the field for the change to
take effect.

Label is a string that specifies the text label for the menu item. To display
the & character in a label, use two & characters in the string. The words
remove, default, and factory (case sensitive) are reserved. To use one of
these as labels, prepend a backslash (\) to the string. For example, \remove
yields remove.

Tag is a string that is an identifier for the menu object. It is used in the
code to identify the menu item and must be unique in the GUI.

6-73

6 Laying Out a GUIDE GUI

Adding Items to a Menu
Use the New Menu Item tool to create menu items that are displayed in
the drop-down menu.

1 Add an Open menu item under File, by selecting File then clicking the
New Menu Item button in the toolbar. A temporary numbered menu
item label, Untitled, appears.

6-74

Creating Menus

2 Fill in the Label and Tag fields for the new menu item. For example, set
Label to Open and set Tag to menu_file_open. Click outside the field
for the change to take effect.

You can also

• Choose an alphabetic keyboard accelerator for the menu item with the
Accelerator pop-up menu. In combination with Ctrl, this is the keyboard
equivalent for a menu item that does not have a child menu. Note that
some accelerators may be used for other purposes on your system and that
other actions may result.

• Display a separator above the menu item by checking Separator above
this item.

• Display a check next to the menu item when the menu is first opened by
checking Check mark this item. A check indicates the current state of
the menu item. See the example in “Adding Items to the Context Menu”
on page 6-80.

6-75

6 Laying Out a GUIDE GUI

• Enable this item when the menu is first opened by checking Enable this
item. This allows the user to select this item when the menu is first
opened. If you uncheck this option, the menu item appears dimmed when
the menu is first opened, and the user cannot select it.

• Specify a string for the routine, i.e., the Callback, that performs the
action associated with the menu item. If you have not yet saved the GUI,
the default value is %automatic. When you save the GUI, and if you
have not changed this field, GUIDE automatically sets the value using
a combination of the Tag field and the GUI filename. See “Menu Item”
on page 8-41 for more information about specifying this field and for
programming menu items.

The View button displays the callback, if there is one, in an editor. If you
have not yet saved the GUI, GUIDE prompts you to save it.

• Open the Property Inspector, where you can change all menu properties,
by clicking the More options button. For detailed information about the
properties, see Uimenu Properties in the MATLAB documentation.

Note In general, programming conventions described for components in
Chapter 8, “Programming a GUIDE GUI” also apply to menu items. See
“Menu Item” on page 8-41 and “Updating a Menu Item Check” on page 8-42
for programming information and basic examples.

Additional Drop-Down Menus
To create additional drop-down menus, use the New Menu button in the same
way you did to create the File menu. For example, the following figure also
shows an Edit drop-down menu.

6-76

Creating Menus

Cascading Menus
To create a cascading menu, select the menu item that will be the title for the
cascading menu, then click the New Menu Item button. In the example
below, Copy is a cascading menu.

Note See “Menu Item” on page 8-41 for information about programming
menu items.

6-77

6 Laying Out a GUIDE GUI

Laying Out Three Menus
The following Menu Editor illustration shows three menus defined for the
figure menu bar.

When you run the GUI, the menu titles appear in the menu bar.

6-78

Creating Menus

Context Menus
A context menu is displayed when a user right-clicks the object for which the
menu is defined. The Menu Editor enables you to define context menus and
associate them with objects in the layout. The process has three steps:

1 “Creating the Parent Menu” on page 6-79

2 “Adding Items to the Context Menu” on page 6-80

3 “Associating the Context Menu with an Object” on page 6-82

Note See “Menus for the Menu Bar” on page 6-71 for information about
defining menus in general. See “Menu Item” on page 8-41 for information
about defining callback subfunctions for your menus.

Creating the Parent Menu
All items in a context menu are children of a menu that is not displayed on
the figure menu bar. To define the parent menu:

1 Select the Menu Editor’s Context Menus tab and select the New Context
Menu button from the toolbar.

6-79

6 Laying Out a GUIDE GUI

2 Select the menu and specify the Tag field to identify the context menu
(axes_context_menu in this example).

Adding Items to the Context Menu
Use the New Menu Item button to create menu items that are displayed
in the context menu.

1 Add a Blue background color menu item to the menu by selecting
axes_context_menu and clicking the New Menu Item tool. A temporary
numbered menu item label, Untitled, appears.

6-80

Creating Menus

2 Fill in the Label and Tag fields for the new menu item. For example, set
Label to Blue background color and set Tag to blue_background. Click
outside the field for the change to take effect.

You can also

• Display a separator above the menu item by checking Separator above
this item.

• Display a check next to the menu item when the menu is first opened by
checking Check mark this item. A check indicates the current state of

6-81

6 Laying Out a GUIDE GUI

the menu item. See the example in “Adding Items to the Context Menu”
on page 6-80. See “Updating a Menu Item Check” on page 8-42 for a code
example.

• Enable this item when the menu is first opened by checking Enable this
item. This allows the user to select this item when the menu is first
opened. If you uncheck this option, the menu item appears dimmed when
the menu is first opened, and the user cannot select it.

• Specify a string for the routine, i.e., the Callback, that performs the
action associated with the menu item. If you have not yet saved the GUI,
the default value is %automatic. When you save the GUI, and if you
have not changed this field, GUIDE automatically sets the value using
a combination of the Tag field and the GUI filename. See “Menu Item”
on page 8-41 for more information about specifying this field and for
programming menu items.

The View button displays the callback, if there is one, in an editor. If you
have not yet saved the GUI, GUIDE prompts you to save it.

• Open the Property Inspector, where you can change all menu properties, by
clicking the More options button. For detailed information about these
properties, see Uicontextmenu Properties in the MATLAB documentation.

Associating the Context Menu with an Object

1 In the Layout Editor, select the object for which you are defining the
context menu.

2 Use the Property Inspector to set this object’s UIContextMenu property to
the name of the desired context menu.

The following figure shows the UIContextMenu property for the axes object
with Tag property axes1.

6-82

Creating Menus

In the GUI M-file, complete the callback subfunction for each item in the
context menu. Each callback executes when a user selects the associated
context menu item. See “Menu Item” on page 8-41 for information on defining
the syntax.

Note In general, programming conventions described for components in
Chapter 8, “Programming a GUIDE GUI” also apply to menu items. See
“Menu Item” on page 8-41 and “Updating a Menu Item Check” on page 8-42
for programming information and basic examples.

6-83

6 Laying Out a GUIDE GUI

Creating Toolbars

In this section...

“Creating Toolbars with GUIDE” on page 6-84

“Editing Tool Icons” on page 6-94

“Creating Toolbars Programmatically” on page 6-98

Creating Toolbars with GUIDE
You can add a toolbar to a GUI you create in GUIDE with the Toolbar Editor,
which you open from the GUIDE Layout Editor toolbar.

6-84

Creating Toolbars

You can also open the Toolbar Editor from the Tools menu.

6-85

6 Laying Out a GUIDE GUI

The Toolbar Editor gives you interactive access to all the features of the
uitoolbar, uipushtool, and uitoggletool functions. It only operates in the
context of GUIDE; you cannot use it to modify any of the built-in MATLAB
toolbars. However, you can use the Toolbar Editor to add, modify, and delete
a toolbar from any GUI in GUIDE.

Currently, you can add one toolbar to your GUI in GUIDE. However, your
GUI can also include the standard MATLAB figure toolbar. If you need to, you
can create a toolbar that looks like a normal figure toolbar, but customize its
callbacks to make tools (such as pan, zoom, and open) behave in specific ways.

6-86

Creating Toolbars

Note You do not need to use the Toolbar Editor if you simply want your
GUI to have a standard figure toolbar. You can do this by setting the figure’s
Toolbar property to 'figure', as follows:

1 Open the GUI in GUIDE.

2 From the View menu, open Property Inspector.

3 Set the Toolbar property to figure using the drop-down menu.

4 Save the figure

If you later want to remove the figure toolbar, set the Toolbar property to
auto and resave the GUI. This will not remove or hide your custom toolbar
should the GUI have one. See “Creating Toolbars Programmatically” on page
6-98 for more information about creating a toolbar with M-code.

Using the Toolbar Editor
The Toolbar Editor contains three main parts:

• The Toolbar Layout preview area on the top

• The Tool Palette on the left

• Two tabbed property panes on the right

6-87

6 Laying Out a GUIDE GUI

To add a tool, drag an icon from the Tool Palette into the Toolbar Layout
(which initially contains the text prompt shown above), and edit the tool’s
properties in the Tool Properties pane.

6-88

Creating Toolbars

When you first create a GUI, no toolbar exists on it. When you open the
Toolbar Editor and place the first tool, a toolbar is created and a preview of
the tool you just added appears in the top part of the window. If you later
open a GUI that has a toolbar, the Toolbar Editor shows the existing toolbar,
although the Layout Editor does not.

Adding Tools
You can add a tool to a toolbar in three ways:

• Drag and drop tools from the Tool Palette.

• Select a tool in the palette and click the Add button.

• Double-click a tool in the palette.

Dragging allows you to place a tool in any order on the toolbar. The other two
methods place the tool to the right of the right-most tool on the Toolbar
Layout. The new tool is selected (indicated by a dashed box around it) and
its properties are shown in the Tool Properties pane. You can select only
one tool at a time. You can cycle through the Tool Palette using the tab key
or arrow keys on your computer keyboard. You must have placed at least
one tool on the toolbar.

After you place tools from the Tool Palette into the Toolbar Layout area,
the Toolbar Editor shows the properties of the currently selected tool, as the
following illustration shows.

6-89

6 Laying Out a GUIDE GUI

Predefined and Custom Tools
The Toolbar Editor provides two types of tools:

6-90

Creating Toolbars

• Predefined tools, having standard icons and behaviors

• Custom tools, having generic icons and no behaviors

Predefined Tools. The set of icons on the bottom of the Tool Palette
represent standard MATLAB figure tools. Their behavior is built in.
Predefined tools that require an axes (such as pan and zoom) do not exhibit
any behavior in GUIs lacking axes. The callback(s) defining the behavior of
the predefined tool are shown as %default, which calls the same function
that the tool calls in standard figure toolbars and menus (to open files, save
figures, change modes, etc.). You can change %default to some other callback
to customize the tool; GUIDE warns you that you will modify the behavior of
the tool when you change a callback field or click the View button next to it,
and asks if you want to proceed or not.

Custom Tools. The two icons at the top of the Tool Palette create pushtools
and toggletools. These have no built-in behavior except for managing their
appearance when clicked on and off. Consequently, you need to provide your
own callback(s) when you add one to your toolbar. In order for custom tools to
respond to clicks, you need to edit their callbacks to create the behaviors you
desire. Do this by clicking the View button next to the callback in the Tool
Properties pane, and then editing the callback in the Editor window.

Adding and Removing Separators
Separators are vertical bars that set off tools, enabling you to group them
visually. You can add or remove a separator in any of three ways:

• Right-click on a tool’s preview and select Show Separator, which toggles
its separator on and off.

• Check or clear the checkbox Separator to the left in the tool’s property
pane.

• Change the Separator property of the tool from the Property Inspector

After adding a separator, that separator appears in the Toolbar Layout
to the left of the tool. The separator is not a distinct object or icon; it is a
property of the tool.

6-91

6 Laying Out a GUIDE GUI

Moving Tools
You can reorder tools on the toolbar in two ways:

• Drag a tool to a new position.

• Select a tool in the toolbar and click one of the arrow buttons below the
right side of the toolbar.

If a tool has a separator to its left, the separator moves with the tool.

Removing Tools
You can remove tools from the toolbar in three ways:

• Select a tool and press the Delete key.

• Select a tool and click the Delete button on the GUI.

• Right-click a tool and select Delete from the context menu.

You cannot undo any of these actions.

Editing a Tool’s Properties
You edit the appearance and behavior of the currently selected tool using the
Tool Properties pane, which includes controls for setting the most commonly
used tool properties:

• CData — The tool’s icon

• Tag — The internal name for the tool

• Enable — Whether users can click the tool

• Separator — A bar to the left of the icon for setting off and grouping tools

• Clicked Callback — The function called when users click the tool

• Off Callback (uitoggletool only) — The function called when the tool is put
in the off state

• On Callback (uitoggletool only) — The function called when the tool is
put in the on state

6-92

Creating Toolbars

See “Callbacks: An Overview” on page 8-2 for details on programming the tool
callbacks. You can also access these and other properties of the selected tool
with the Property Inspector. To open the Property Inspector, clicki the More
Properties button on the Tool Properties pane.

Editing Tool Icons
To edit a selected toolbar icon, click the Edit button in the Tool Properties
pane, next to CData (icon) or right-click the Toolbar Layout and select
Edit Icon from the context menu. The Icon Editor opens with the tool’s
CData loaded into it. For information about editing icons, see “Using the Icon
Editor” on page 6-95.

Editing Toolbar Properties
If you click an empty part of the toolbar or click the Toolbar Properties
tab, you can edit two of its properties:

• Tag — The internal name for the toolbar

• Visible — Whether the toolbar is displayed in your GUI

The Tag property is initially set to uitoolbar1. The Visible property is set to
on. When on, the Visible property causes the toolbar to be displayed on the
GUI regardless of the setting of the figure’s Toolbar property. If you want to
toggle a custom toolbar as you can built-in ones (from the View menu), you can
create a menu item, a checkbox, or other control to control its Visible property.

To access nearly all the properties for the toolbar in the Property Inspector,
click More Properties.

Testing Your Toolbar
To try out your toolbar, click the Run button in the Layout Editor. MATLAB
asks if you want to save changes to its .fig file first.

Removing a Toolbar
You can remove a toolbar completely—destroying it—from the Toolbar Editor,
leaving your GUI without a toolbar (other than the figure toolbar, which is not
visible by default). The are two ways to remove a toolbar:

6-93

6 Laying Out a GUIDE GUI

• Click the Remove button on the right end of the toolbar.

• Right-click a blank area on the toolbar and select Remove Toolbar from
the context menu.

If you remove all the individual tools in the ways shown in “Removing Tools”
on page 6-92 without removing the toolbar itself, your GUI will contain an
empty toolbar.

Closing the Toolbar Editor
You can close the Toolbar Editor window in two ways:

• Press the OK button.

• Click the Close box in the title bar.

When you close the Toolbar Editor, the current state of your toolbar is saved
with the GUI you are editing. You do not see the toolbar in the Layout Editor;
you need to run the GUI to see or use it.

Editing Tool Icons
GUIDE includes its own Icon Editor, a GUI for creating and modifying icons
such as icons on toolbars. You can access this editor only from the Toolbar
Editor. This figure shows the Icon Editor loaded with a standard Save icon.

6-94

Creating Toolbars

Note There are examples that show how to create your own icon editor. See
the example in “Icon Editor” on page 15-29 and the discussion of sharing data
among multiple GUIs in the portion of the GUI Building documentation.

Using the Icon Editor
The Icon Editor GUI includes the following components:

• Icon file name — The icon image file to be loaded for editing

• Import button — Opens a file dialog to select an existing icon file for
editing

• Drawing tools — A group of four tools on the left side for editing icons

6-95

6 Laying Out a GUIDE GUI

- Pencil tool — Color icon pixels by clicking or dragging

- Eraser tool — Erase pixels to be transparent by clicking or dragging

- Paint bucket tool — Flood regions of same-color pixels with the current
color

- Pick color tool — Click a pixel or color palette swatch to define the
current color

• Icon Edit pane — A n-by-m grid where you color an icon

• Preview pane — A button with a preview of current state of the icon

• Color Palette — Swatches of color that the pencil and paint tools can use

• More Colors button — Opens the Colors dialog box for choosing and
defining colors

• OK button — Dismisses the GUI and returns the icon in its current state

• Cancel button — Closes the GUI without returning the icon

To work with the Icon Editor,

1 Open the Icon Editor for a selected tool’s icon.

2 Using the Pencil tool, color the squares in the grid:

• Click a color cell in the palette.

• That color appears in the Color Palette preview swatch.

• Click in specific squares of the grid to transfer the selected color to
those squares.

• Hold down the left mouse button and drag the mouse over the grid to
transfer the selected color to the squares that you touch.

• Change a color by writing over it with another color.

3 Using the Eraser tool, erase the color in some squares

• Click the Eraser button on the palette.

• Click in specific squares to erase those squares.

6-96

Creating Toolbars

• Click and drag the mouse to erase the squares that you touch.

• Click a another drawing tool to disable the Eraser.

4 Click OK to close the GUI and return the icon you created or click Cancel
to close the GUI without modifying the selected tool’s icon.

The three GUIs are shown operating together below, before saving a
uipushtool icon:

6-97

6 Laying Out a GUIDE GUI

Creating Toolbars Programmatically
As described previously, GUIDE provides tools to enable you to add a
toolbar to a GUI and add tools to it. You can also add a toolbar and tools
programmatically by adding code to the opening function.

6-98

Creating Toolbars

See “Initialization Callbacks” on page 8-16 for information about the opening
function, and see the uitoolbar, uipushtool, and uitoggletool reference
pages for information and examples.

This example creates a toolbar (uitoolbar) and places a toggle tool
(uitoggletool) on it. Add the following code to the GUI’s opening function to
produce the toolbar shown:

ht = uitoolbar(hObject)
a = rand(16,16,3);
htt = uitoggletool(ht,'CData',a,'TooltipString','Hello')

In the opening function, hObject is an input argument that holds the figure
handle. The CData property enables you to display a truecolor image on the
toggle tool.

6-99

6 Laying Out a GUIDE GUI

Viewing the Object Hierarchy
The Object Browser displays a hierarchical list of the objects in the figure,
including both components and menus. As you lay out your GUI, check the
object hierarchy periodically, especially if your GUI contains menus, panes,
or button groups.

The following illustration shows a figure object and its child objects. It also
shows the child objects of the pane and a menu that was created.

To determine a component’s place in the hierarchy, select it in the Layout
Editor. It is automatically selected in the Object Browser. Similarly, if you
select an object in the Object Browser, it is automatically selected in the
Layout Editor.

6-100

Designing for Cross-Platform Compatibility

Designing for Cross-Platform Compatibility

In this section...

“Default System Font” on page 6-101

“Standard Background Color” on page 6-102

“Cross-Platform Compatible Units” on page 6-103

Default System Font
By default, user interface controls (uicontrols) use the default font for the
platform on which they are running. For example, when displaying your GUI
on PCs, uicontrols use MS San Serif. When your GUI runs on a different
platform, it uses that computer’s default font. This provides a consistent look
with respect to your GUI and other application GUIs.

If you have set the FontName property to a named font and want to return
to the default value, you can set the property to the string default. This
ensures that MATLAB uses the system default at run-time.

You can use the Property Inspector to set this property:

Or you can use the set command to set the property in the GUI M-file. For
example, if there is a push button in your GUI and its handle is stored in the
pushbutton1 field of the handles structure, then the statement

set(handles.pushbutton1,'FontName','default')

sets the FontName property to use the system default.

6-101

6 Laying Out a GUIDE GUI

Specifying a Fixed-Width Font
If you want to use a fixed-width font for a user interface control, set its
FontName property to the string fixedwidth. This special identifier ensures
that your GUI uses the standard fixed-width font for the target platform.

You can find the name of the fixed-width font that is used on a given platform
by querying the root FixedWidthFontName property.

get(0,'FixedWidthFontName')

Using a Specific Font Name
You can specify an actual font name (such as Times or Courier) for the
FontName property. However, doing so may cause your GUI to not look as
you intended when run on a different computer. If the target computer does
not have the specified font, it will substitute another font that may not look
good in your GUI or may not be the standard font used for GUIs on that
system. Also, different versions of the same named font may have different
size requirements for a given set of characters.

Standard Background Color
The default component background color is the standard system background
color on which the GUI is running. This color varies on different computer
systems, e.g., the standard shade of gray on the PC differs from that on UNIX,
and may not match the default GUI background color.

If you use the default component background color, you can use that same
color as the background color for your GUI. This provides a consistent look
with respect to your GUI and other application GUIs. To do this in GUIDE,
check Options > Use system color scheme for background on the Layout
Editor Tools menu.

Note This option is available only if you first select the Generate FIG-file
and M-File option.

6-102

Designing for Cross-Platform Compatibility

The following figures illustrate the results with and without system color
matching.

Cross-Platform Compatible Units
Cross-platform compatible GUIs should look correct on computers having
different screen sizes and resolutions. Since the size of a pixel can vary on
different computer displays, using the default figure Units of pixels does not
produce a GUI that looks the same on all platforms.

For this reason, GUIDE defaults the Units property for the figure to
characters.

System-Dependent Units
Character units are defined by characters from the default system font. The
width of a character unit equals the width of the letter x in the system font.
The height of a character unit is the distance between the baselines of two
lines of text. Note that character units are not square.

6-103

6 Laying Out a GUIDE GUI

Units and Resize Behavior
If you set your GUI’s resize behavior from the GUI Options dialog box,
GUIDE automatically sets the units for the GUI’s components in a way that
maintains the intended look and feel across platforms. To specify the resize
behavior option, select GUI Options from the Tools menu, then specify
Resize behavior by selecting Non-resizable, Proportional, or Other
(Use ResizeFcn).

If you choose Non-resizable, GUIDE defaults the component units to
characters. If you choose Proportional, it defaults the component units to
normalized. In either case, these settings enable your GUI to automatically
adjust the size and relative spacing of components as the GUI displays on
different computers.

If you choose Other (Use ResizeFcn), GUIDE defaults the component units
to characters. However, you must provide a ResizeFcn callback to customize
the GUI’s resize behavior.

Note GUIDE does not automatically adjust component units if you modify
the figure’s Resize property programmatically or in the Property Inspector.

At times, it may be convenient to use a more familiar unit of measure, e.g.,
inches or centimeters, when you are laying out the GUI. However, to preserve
the look of your GUI on different computers, remember to change the figure
Units property back to characters, and the components’ Units properties
to characters (nonresizable GUIs) or normalized (resizable GUIs) before
you save the GUI.

6-104

7

Saving and Running a
GUIDE GUI

Naming a GUI and Its Files (p. 7-2) Describes the GUI files and how
they are named.

Saving a GUI (p. 7-4) Describes the various ways of saving
a GUI in GUIDE.

Running a GUI (p. 7-10) Tells you how to run a GUI from
GUIDE and from the command line.

7 Saving and Running a GUIDE GUI

Naming a GUI and Its Files

In this section...

“The GUI Files” on page 7-2

“File and GUI Names” on page 7-2

“Renaming GUIs and GUI Files” on page 7-3

The GUI Files
By default, GUIDE stores a GUI in two files which are generated the first
time you save or run the GUI:

• A FIG-file, with extension .fig, that contains a complete description of the
GUI layout and the GUI components, such as push buttons, axes, panels,
menus, and so on. The FIG-file is a binary file and you cannot modify it
except by changing the layout in GUIDE. Note that a FIG-file is a kind of
MAT-file. See “MAT-Files Preferences” in the MATLAB Desktop Tools and
Development Environment documentation for more information.

• An M-file, with extension .m, that contains the code that controls the GUI,
including the callbacks for its components.

These two files usually reside in the same directory. They correspond to the
tasks of laying out and programming the GUI. When you lay out the GUI in
the Layout Editor, your work is stored in the FIG-file. When you program the
GUI, your work is stored in the corresponding M-file.

Note that if your GUI includes ActiveX components, GUIDE also generates
a file for each ActiveX component. See “ActiveX Control” on page 8-33 for
more information.

For more information about these files, see “GUI Files: An Overview” on
page 8-5.

File and GUI Names
The M-file and the FIG-file that define your GUI must have the same name.
This name is also the name of your GUI.

7-2

Naming a GUI and Its Files

For example, if your files are named mygui.fig and mygui.m, then the
name of the GUI is mygui, and you can run the GUI by typing mygui at the
command line. This assumes that the M-file and FIG-file are in the same
directory and that the directory is in your path.

Names are assigned when you save the GUI the first time. See “Ways to Save
a GUI” on page 7-4 for information about saving GUIs.

Renaming GUIs and GUI Files
To rename a GUI, rename the GUI FIG-file using Save As from the Layout
Editor File menu. When you do this, GUIDE renames both the FIG-file and
the GUI M-file, updates any callback properties that contain the old name
to use the new name, and updates all instances of the file name in the body
of the M-file.

7-3

7 Saving and Running a GUIDE GUI

Saving a GUI

In this section...

“Ways to Save a GUI” on page 7-4

“Saving a New GUI” on page 7-5

“Saving an Existing GUI” on page 7-8

Ways to Save a GUI
You can save a GUI in GUIDE in any of these ways:

• From the GUIDE Quick Start dialog box. Before you select a template,
GUIDE lets you select a name for your GUI. When you click OK, GUIDE
saves the GUI M-file and FIG-file using the name you specify.

• The first time you save the files by

- Clicking the Save icon on the Layout Editor toolbar

- Selecting the Save or Save as options on the File menu

7-4

Saving a GUI

In either case, GUIDE prompts you for a name before saving the GUI.

• The first time you run the GUI by

- Clicking the Run icon on the Layout Editor toolbar

- Selecting Run from the Tools menu

In each case, GUIDE prompts you for a name and saves the GUI files
before activating the GUI.

In all cases, GUIDE creates a template M-file and opens it in your default
editor. See “Naming of Callback Functions” on page 8-13 for more information
about the template M-file.

Note In most cases you should save your GUI to your current directory or
to your path. GUIDE-generated GUIs cannot run correctly from a private
directory. GUI FIG-files that are created or modified with MATLAB 7.0 or
a later MATLAB version, are not automatically compatible with Version
6.5 and earlier versions. To make a FIG-file, which is a kind of MAT-file,
backward compatible, you must check General > MAT-Files > Ensure
backward compatibility (-v6) in the MATLAB Preferences dialog box
before saving the file. Button groups and panels are introduced in MATLAB
7.0, and you should not use them in GUIs that you expect to run in earlier
MATLAB versions.

Saving a New GUI
Follow these steps if you are saving a GUI for the first time, or if you are
using Save as from the File menu.

Note If you select Save as from the File menu or click the Save button
on the toolbar, GUIDE saves the GUI without activating it. However, if

you select Run from the Tools menu or click the Run icon on the toolbar,
GUIDE saves the GUI before activating it.

7-5

7 Saving and Running a GUIDE GUI

1 If you have made changes to the GUI and elect to activate the GUI by
selecting Run from the Tools menu or by clicking the Run icon on the
toolbar, GUIDE displays the following dialog box. Click Yes to continue.

2 If you clicked Yes in the previous step, if you are saving the GUI without
activating it, or if you are using Save as from the File menu, GUIDE opens
a Save As dialog box and prompts you for a FIG-file name.

3 Change the directory if you choose, and then enter the name you want to
use for the FIG-file. Be sure to choose a writable directory. GUIDE saves
both the FIG-file and the M-file using this name.

Note In most cases you should save your GUI to your current directory or
to your path. GUIDE-generated GUIs cannot run correctly from a private
directory.

7-6

Saving a GUI

4 If you choose an existing filename, GUIDE displays a dialog box that asks
you if you want to replace the existing FIG-file. Click Yes to continue.

5 If you chose Yes in the previous step, GUIDE displays a dialog that asks if
you want to replace the existing M-file or append to it. The most common
choice is Replace.

If you choose Append, GUIDE adds callbacks to the existing M-file for
components in the current layout that are not present in the existing M-file.
Before you append the new components, ensure that their Tag properties
do not duplicate Tag values that appear in callback function names in
the existing M-file. See “Assigning an Identifier to Each Component” on
page 6-27 for information about specifying the Tag property. See “Naming
of Callback Functions” on page 8-13 for more information about callback
function names.

7-7

7 Saving and Running a GUIDE GUI

6 If you chose to activate the GUI by selecting Run from the Tools menu or
by clicking the Run button on the toolbar, and if the directory in which
you save the GUI is not on the MATLAB path, GUIDE opens a dialog box,
giving you the option of changing the current working directory to the
directory containing the GUI files, or adding that directory to the top or
bottom of the MATLAB path.

7 After you save the files, GUIDE opens the GUI M-file in your default editor.
If you elected to run the GUI, it also activates the GUI.

Saving an Existing GUI
Follow these steps if you are saving an existing GUI to its current location. See
“Saving a New GUI” on page 7-5 if you are using Save as from the File menu.

If you have made changes to a GUI and choose to save and activate the GUI
by selecting Run from the Tools menu or by clicking the Run button on the
toolbar, GUIDE saves the GUI and then activates it. It does not automatically
open the M-file, even if you added new components.

7-8

Saving a GUI

If you select Save from the File menu or click the Save button on the
toolbar, GUIDE saves the GUI without activating it.

7-9

7 Saving and Running a GUIDE GUI

Running a GUI

In this section...

“Executing the M-file” on page 7-10

“From the GUIDE Layout Editor” on page 7-10

“From the Command Line” on page 7-11

“From an M-file” on page 7-11

Executing the M-file
Generally, you run your GUI by executing the M-file that GUIDE generates.
This M-file contains the commands to load the GUI and provides a framework
for the component callbacks. See “GUI Files: An Overview” on page 8-5 for
more information about the M-file.

When you execute the M-file, a fully functional copy of the GUI displays on
the screen. You can run a GUI:

Note You can display a copy of the GUI figure using the openfig, open,
or hgload function. These commands load FIG-files into the MATLAB
workspace. The displayed GUI is active, and you can manipulate the
components. But nothing happens. This is because no corresponding M-file
has been executed.

From the GUIDE Layout Editor
Run your GUI from the GUIDE Layout Editor by:

• Clicking the button on the Layout Editor toolbar

• Selecting Run from the Tools menu

In either case, if the GUI has changed or has never been saved, GUIDE saves
the GUI files before activating it and opens the GUI M-file in your default
editor. See “Saving a GUI” on page 7-4 for information about this process. See
“GUI Files: An Overview” on page 8-5 for more information about GUI M-files.

7-10

Running a GUI

From the Command Line
Run your GUI from its M-file by executing the GUI M-file. For example, if
your GUI M-file is mygui.m, type

mygui

at the command line. The files must reside on your path or in your current
directory.

If a GUI accepts arguments when it is run, they are passed to the GUI’s
opening function. See “Opening Function” on page 8-16 for more information.

Note Consider whether you want to allow more than one copy of the GUI
to be active at the same time. If you want only one GUI to be active, select
Options > GUI Allows Only One Instance to Run (Singleton) from
the Layout Editor View menu. See “GUI Options” on page 5-9 for more
information.

From an M-file
Run your GUI from an M-file by executing the GUI M-file. For example, if your
GUI M-file is mygui.m, include the following statement in your M-file script.

mygui

The M-file must reside on the MATLAB path or in the current MATLAB
directory where the GUI is run.

If a GUI accepts arguments when it is run, they are passed to the GUI’s
opening function. See “Opening Function” on page 8-16 for more information.

Note Consider whether you want to allow more than one copy of the GUI
to be active at the same time. If you want only one GUI to be active, select
Options from the Layout Editor View menu, then select GUI Allows Only
One Instance to Run (Singleton). See “GUI Options” on page 5-9 for more
information.

7-11

7 Saving and Running a GUIDE GUI

7-12

8

Programming a GUIDE
GUI

Callbacks: An Overview (p. 8-2) Introduces the functions, referred to
as callbacks, that you use to program
GUI behavior.

GUI Files: An Overview (p. 8-5) Describes the files that comprise a
GUI and details the structure of the
GUI M-file which you must program.

Associating Callbacks with
Components (p. 8-8)

Outlines the mechanisms that
GUIDE uses for associating a
callback with a specific component.

Callback Syntax and Arguments
(p. 8-12)

Describes callback naming
conventions and input arguments,
and introduces the handles structure
as a tool for communicating among
a GUI’s callbacks.

Initialization Callbacks (p. 8-16) Describes the functions, provided by
GUIDE, that you can use to initialize
a GUI.

Examples: Programming GUIDE
GUI Components (p. 8-20)

Provides a brief example for
programming each kind of
component.

8 Programming a GUIDE GUI

Callbacks: An Overview

In this section...

“Programming of GUIs Created Using GUIDE” on page 8-2

“What Is a Callback?” on page 8-2

“Kinds of Callbacks” on page 8-2

Programming of GUIs Created Using GUIDE
After you have laid out your GUI, you need to program its behavior. The code
you write controls how the GUI responds to events such as button clicks, slider
movement, menu item selection, or the creation and deletion of components.
This programming takes the form of a set of functions, called callbacks, for
each component and for the GUI figure itself.

What Is a Callback?
A callback is a function that you write and associate with a specific GUI
component or with the GUI figure. It controls GUI or component behavior by
performing some action in response to an event for its component. This kind
of programming is often called event-driven programming.

When an event occurs for a component, MATLAB invokes the component’s
callback that is triggered by that event. As an example, suppose a GUI has
a button that triggers the plotting of some data. When the user clicks the
button, MATLAB calls the callback you associated with clicking that button,
and the callback, which you have programmed, then gets the data and plots it.

A component can be any control device such as a push button, list box, or
slider. For purposes of programming, it can also be a menu or a container such
as a panel or button group. See “Available Components” on page 6-19 for a
list and descriptions of components.

Kinds of Callbacks
The GUI figure and each type of component has specific kinds of callbacks
with which it can be associated. The callbacks that are available for each
component are defined as properties of that component. For example, a push

8-2

Callbacks: An Overview

button has five callback properties: ButtonDownFcn, Callback, CreateFcn,
DeleteFcn, and KeyPressFcn. A panel has four callback properties:
ButtonDownFcn, CreateFcn, DeleteFcn, and ResizeFcn. You can, but are
not required to, create a callback function for each of these properties. The
GUI itself, which is a figure, also has certain kinds of callbacks with which
it can be associated.

Each kind of callback has a triggering mechanism or event that causes it to be
called. The following table lists the callback properties that GUIDE makes
available, their triggering events, and the components to which they apply.

Callback Property Triggering Event Components

ButtonDownFcn Executes when the user presses a
mouse button while the pointer is on
or within five pixels of a component
or figure. If the component is a user
interface control, its Enable property
must be on.

Axes, figure, button
group, panel, user
interface controls

Callback Component action. Executes, for
example, when a user clicks a push
button or selects a menu item.

Context menu,
menu, user interface
controls

CloseRequestFcn Executes before the figure closes. Figure

CreateFcn Component creation. It can be use
to initialize the component when
it is created. It executes after the
component or figure is created, but
before it is displayed.

Axes, figure, button
group, context menu,
menu, panel, user
interface controls

DeleteFcn Component deletion. It can be used to
perform cleanup operations just before
the component or figure is destroyed.

Axes, figure, button
group, context menu,
menu, panel, user
interface controls

KeyPressFcn Executes when the user presses
a keyboard key and the callback’s
component or figure has focus.

Figure, user interface
controls

KeyReleaseFcn Executes when the user releases a
keyboard key and the figure has focus.

Figure

8-3

8 Programming a GUIDE GUI

Callback Property Triggering Event Components

ResizeFcn Executes when a user resizes a panel,
button group, or figure whose figure
Resize property is set to On.

Button group, figure,
panel

SelectionChangeFcn Executes when a user selects a
different radio button or toggle button
in a button group component.

Button group

WindowButtonDownFcn Executes when you press a mouse
button while the pointer is in the figure
window.

Figure

WindowButtonMotionFcn Executes when you move the pointer
within the figure window.

Figure

WindowButtonUpFcn Executes when you release a mouse
button.

Figure

WindowScrollWheelFcn Executes when the mouse wheel is
scrolled while the figure has focus.

Figure

Note User interface controls include push buttons, sliders, radio buttons,
check boxes, editable text boxes, static text boxes, list boxes, and toggle
buttons. They are sometimes referred to as uicontrols.

Check the properties reference page for your component, e.g.,
UicontrolProperties, to get specific information for a given callback
property.

8-4

GUI Files: An Overview

GUI Files: An Overview

In this section...

“M-Files and FIG-Files” on page 8-5

“GUI M-File Structure” on page 8-6

“Adding Callback Templates to an Existing GUI M-File” on page 8-6

M-Files and FIG-Files
By default, the first time you save or run a GUI, GUIDE stores the GUI in
two files:

• A FIG-file, with extension .fig, that contains a complete description of the
GUI layout and the GUI components, such as push buttons, axes, panels,
menus, and so on. The FIG-file is a binary file and you cannot modify it
except by changing the layout in GUIDE. Note that a FIG-file is a kind of
MAT-file. See “MAT-Files Preferences” for more information.

• An M-file, with extension .m, that initially contains initialization code and
templates for some callbacks that are needed to control GUI behavior. You
must add the callbacks you write for your GUI components to this file.

When you save your GUI the first time, GUIDE automatically opens the
M-file in your default editor.

The FIG-file and the M-file, usually reside in the same directory. They
correspond to the tasks of laying out and programming the GUI. When you lay
out the GUI in the Layout Editor, your work is stored in the FIG-file. When
you program the GUI, your work is stored in the corresponding M-file.

If your GUI includes ActiveX components, GUIDE also generates a file for each
ActiveX component. See “ActiveX Control” on page 8-33 for more information.

For more information about naming and saving a GUI, see Chapter 7, “Saving
and Running a GUIDE GUI”. If you want to change the name of your GUI
and its files, see “Renaming GUIs and GUI Files” on page 7-3.

8-5

8 Programming a GUIDE GUI

GUI M-File Structure
The GUI M-file that GUIDE generates is a function file. The name of the
main function is the same as the name of the M-file. For example, if the name
of the M-file is mygui.m, then the name of the main function is mygui. Each
callback in the file is a subfunction of the main function.

When GUIDE generates an M-file, it automatically includes templates for the
most commonly used callbacks for each component. The M-file also contains
initialization code, as well as an opening function callback and an output
function callback. You must add code to the component callbacks for your GUI
to work as you want. You may also want to add code to the opening function
callback and the output function callback. The major sections of the GUI
M-file are ordered as shown in the following table.

Section Description

Comments Displayed at the command line in response to the help
command. Edit these as necessary for your GUI.

Initialization GUIDE initialization tasks. Do not edit this code.

Opening function Performs your initialization tasks before the user has
access to the GUI.

Output function Returns outputs to the MATLAB command line after
the opening function returns control and before control
returns to the command line.

Component and
figure callbacks

Control the behavior of the GUI figure and of
individual components. MATLAB calls a callback in
response to a particular event for a component or for
the figure itself.

Utility/helper
functions

Perform miscellaneous functions not directly
associated with an event for the figure or a component.

Adding Callback Templates to an Existing GUI M-File
When you save the GUI, GUIDE automatically adds templates for some
callbacks to the M-file. However, you may want to add other callbacks to
the M-file.

8-6

GUI Files: An Overview

Within GUIDE, you can add a callback subfunction template to the GUI
M-file in one of two ways. With the component selected for which you want to
add the callback:

• Click the right mouse button to display the Layout Editor context menu.
Select the desired callback from the View callbacks submenu. GUIDE
adds the callback template to the GUI M-file and opens the M-file for
editing at the callback it just added.

• In the View menu, select the desired callback from the View callbacks
submenu. GUIDE adds the callback template to the GUI M-file and opens
the M-file for editing at the callback you just added.

Note In either case, if you select a callback that already exists in the GUI
M-file, GUIDE adds no callback, but opens the M-file for editing at the
callback you select.

For more information, see “Associating Callbacks with Components” on page
8-8.

8-7

8 Programming a GUIDE GUI

Associating Callbacks with Components

In this section...

“GUI Components” on page 8-8

“Setting Callback Properties Automatically” on page 8-8

“Deleting Callbacks from a GUI M-File” on page 8-11

GUI Components
A GUI can have many components and GUIDE provides a way of specifying
which callback should run in response to a particular event for a particular
component. The callback that runs when the user clicks a Yes button is not
the one that runs for the No button. Similarly, each menu item usually
performs a different function.

GUIDE uses each component’s callback properties to associate specific
callbacks with that component.

Note “Kinds of Callbacks” on page 8-2 provides a list of callback properties
and the components to which each applies.

Setting Callback Properties Automatically
GUIDE initially sets the value of the most commonly used callback properties
for each component to %automatic. For example, a push button has five
callback properties, ButtonDownFcn, Callback, CreateFcn, DeleteFcn, and
KeyPressFcn. GUIDE sets only the Callback property, the most commonly
used callback, to %automatic. You can use the Property Inspector to set the
other callback properties to %automatic.

When you next save the GUI, GUIDE replaces %automatic with a MATLAB
expression that is the GUI calling sequence for the callback. Within the
calling sequence, it constructs the callback name, i.e., the subfunction name,
from the component’s Tag property and the name of the callback property.

8-8

Associating Callbacks with Components

The following figure shows an example of a push button’s Callback and Tag
properties in the GUIDE Property Inspector before the GUI is saved.

Note If you change the string %automatic before saving the GUI, GUIDE
does not automatically add a callback for that component or menu item.

When you save the GUI, GUIDE constructs the name of the callback by
appending an underscore (_) and the name of the callback property to the
value of the component’s Tag property. For example, the MATLAB expression
for the Callback property for a push button in the GUI simple_gui with
Tag property pushbutton1 is

simple_gui(pushbutton1_Callback,gcbo,[],guidata(gcbo))

8-9

8 Programming a GUIDE GUI

simple_gui is the name of the GUI M-file as well as the name of the main
function for that GUI. The remaining arguments generate input arguments
for pushbutton1_Callback. Specifically,

• gcbo is a command that returns the handle of the callback object (i.e.,
pushbutton1).

• [] is a place holder for the currently unused eventdata argument.

• guidata(gcbo) returns the handles structure for this GUI.

See “Input Arguments” on page 8-14 for information about the callback input
arguments.

When you save the GUI, GUIDE also opens the GUI M-file in your editor. The
M-file then contains a template for the Callback callback for the component
whose Tag is pushbutton1. If you activate the GUI, clicking the push button
triggers the execution of the Callback callback for the component.

For information about changing the callback name after GUIDE assigns
it, see “Changing Callback Names Assigned by GUIDE” on page 8-13. For
information about adding callback templates to the GUI M-file, see “Adding
Callback Templates to an Existing GUI M-File” on page 8-6.

The next topic, “Callback Syntax and Arguments” on page 8-12, provides more
information about the callback template.

8-10

Associating Callbacks with Components

Deleting Callbacks from a GUI M-File
There are times when you want to delete a callback from a GUI M-file. The
callback may have been automatically generated or you may have added it
yourself. Some common reasons for wanting to delete a callback are:

• You have deleted the component for which the callback was generated.

• You want the component to use other code and you have already edited
the appropriate callback property in the Property Inspector to point to
the other code.

To delete a callback, whether it is automatically generated or whether you
added it explicitly, you must first ensure that the callback is not used. Only
then should you delete the callback.

To ensure that the callback is not used elsewhere in the GUI:

• Search for occurrences of the name of the callback in the GUI M-file.

• Open the GUI in GUIDE and use the Property Inspector to check for the
name of the callback you want to delete in the callback properties of all
the components.

In either case, if you find a reference to the callback, you must either remove
the reference or retain the callback. Once you have assured yourself that the
code is not used by the GUI, manually delete the entire callback subfunction
from the M-file.

8-11

8 Programming a GUIDE GUI

Callback Syntax and Arguments

In this section...

“Callback Templates” on page 8-12

“Naming of Callback Functions” on page 8-13

“Changing Callback Names Assigned by GUIDE” on page 8-13

“Input Arguments” on page 8-14

“handles Structure” on page 8-15

Callback Templates
GUIDE defines conventions for callback syntax and arguments and
implements these conventions in the callback templates it adds to the M-file.
Each template is similar to this one for the Callback subfunction for a push
button.

% --- Executes on button press in pushbutton1.

function pushbutton1_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton1 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

...

The first comment line describes the event that triggers execution of the
callback. This is followed by the function definition line. The remaining
comments describe the input arguments.

Insert your code after the last comment.

Note You can avoid automatic generation of the callback comment lines for
new callbacks. In the Preferences dialog box, select GUIDE and uncheck Add
comments for newly generated callback functions.

8-12

Callback Syntax and Arguments

Naming of Callback Functions
The previous callback example shows the following function definition:

function pushbutton1_Callback(hObject,eventdata,handles)

When GUIDE generates the template, it creates the callback name by
appending an underscore (_) and the name of the callback property to the
component’s Tag property. In the example above, pushbutton1 is the Tag
property for the push button, and Callback is one of the push button’s callback
properties. The Tag property uniquely identifies a component within the GUI.

The first time you save the GUI after adding a component, GUIDE adds
callbacks for that component to the M-file and generates the callback names
using the current value of the Tag property. If you want to change the default
Tag value, you should do it before you save the GUI.

See “Associating Callbacks with Components” on page 8-8 for more
information.

Changing Callback Names Assigned by GUIDE
You can change callback names assigned by GUIDE in either of the following
ways:

• “Changing the Tag Property” on page 8-13

• “Changing the Callback Property” on page 8-14

Note If possible, change callback names for a component immediately after
you add the component to the layout and before you save the GUI.

Changing the Tag Property
You can change Tag properties to give a component’s callbacks more
meaningful names, e.g., you might change the Tag property from pushbutton1
to closebutton. If possible, change the Tag property before saving the
GUI, then GUIDE automatically uses the new value when it names the
callbacks. However, if you change the Tag property after saving the GUI,

8-13

8 Programming a GUIDE GUI

GUIDE updates the following items according to the new Tag, provided that
all components have distinct tags:

• The component’s callback functions in the M-file

• The value of the component’s callback properties, which you can view in
the Property Inspector

• References in the M-file to the field of the handles structure that contains
the component’s handle. See “handles Structure” on page 8-15 for more
information about the handles structure.

Changing the Callback Property
To rename a particular callback subfunction without changing the Tag
property,

• Replace the name string in the callback property with the new name. For
example, if the value of the callback property for a push button in mygui is

mygui('pushbutton1_Callback',gcbo,[],guidata(gcbo))

the string pushbutton1_Callback is the name of the callback
function. Change the name to the desired name, for example,
closebutton_Callback.

• As necessary, update instances of the callback function name in the M-file.

Input Arguments
All callbacks in the GUI M-file have the following input arguments:

• hObject — Handle of the object, e.g., the GUI component, for which the
callback was triggered. For a button group SelectionChangeFcn callback,
hObject is the handle of the selected radio button or toggle button.

• eventdata — Reserved for later use.

• handles — Structure that contains the handles of all the objects in
the figure. It may also contain application-defined data. See “handles
Structure” on page 8-15 for information about this structure.

8-14

Callback Syntax and Arguments

handles Structure
GUIDE creates a handles structure that contains the handles of all the
objects in the figure. For a GUI that contains an edit text, a panel, a pop-up
menu, and a push button, the handles structure originally looks similar to
this. GUIDE uses each component’s Tag property to name the structure
element for its handle.

handles =
figure1: 160.0011

edit1: 9.0020
uipanel1: 8.0017

popupmenu1: 7.0018
pushbutton1: 161.0011

output: 160.0011

GUIDE creates and maintains the handles structure as GUI data. It is
passed as an input argument to all callbacks and enables a GUI’s callbacks to
share property values and application data.

For information about GUI data, see “Mechanisms for Managing Data” on
page 9-2 and the guidata reference page.

For information about adding fields to the handles structure and
instructions for correctly saving the structure, see Chapter 13, “Managing
Application-Defined Data”.

8-15

8 Programming a GUIDE GUI

Initialization Callbacks

In this section...

“Opening Function” on page 8-16

“Output Function” on page 8-18

Opening Function
The opening function is the first callback in every GUI M-file. It is executed
just before the GUI is made visible to the user, but after all the components
have been created, i.e., after the components’ CreateFcn callbacks, if any,
have been run.

You can use the opening function to perform your initialization tasks before
the user has access to the GUI. For example, you can use it to create data or
to read data from an external source. GUI command-line arguments are
passed to the opening function.

• “Function Naming and Template” on page 8-16

• “Input Arguments” on page 8-17

• “Initial Template Code” on page 8-17

Function Naming and Template
GUIDE names the opening function by appending _OpeningFcn to the name
of the M-file. This is an example of an opening function template as it might
appear in the mygui M-file.

% --- Executes just before mygui is made visible.

function mygui_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to mygui (see VARARGIN)

% Choose default command line output for mygui

handles.output = hObject;

8-16

Initialization Callbacks

% Update handles structure

guidata(hObject, handles);

% UIWAIT makes mygui wait for user response (see UIRESUME)

% uiwait(handles.mygui);

Input Arguments
The opening function has four input arguments hObject, eventdata,
handles, and varargin. The first three are the same as described in “Input
Arguments” on page 8-14. the last argument, varargin, enables you to pass
arguments from the command line to the opening function. The opening
function can make such arguments available to the callbacks by adding them
to the handles structure.

For more information about varargin, see the varargin reference page
and“Passing Variable Numbers of Arguments” in the MATLAB Programming
documentation.

All command-line arguments are passed to the opening function via varargin.
If you open the GUI with a property name/property value pair as arguments,
the GUI opens with the property set to the specified value. For example,
my_gui('Position', [71.8 44.9 74.8 19.7]) opens the GUI at the
specified position, since Position is a valid figure property.

If the input argument is not a valid figure property, you must add code to the
opening function to make use of the argument. For an example, look at the
opening function for the Modal Question Dialog GUI template, available
from the GUIDE Quick Start dialog box. The added code enables you to open
the modal dialog with the syntax

mygui('String','Do you want to exit?')

which displays the text 'Do you want to exit?' on the GUI. In this case, it
is necessary to add code to the opening function because 'String' is not a
valid figure property.

Initial Template Code
Initially, the input function template contains these lines of code:

8-17

8 Programming a GUIDE GUI

• handles.output = hObject adds a new element, output, to the handles
structure and assigns it the value of the input argument hObject, which
is the handle of the figure, i.e., the handle of the GUI. This handle is
used later by the output function. For more information about the output
function, see “Output Function” on page 8-18.

• guidata(hObject,handles) saves the handles structure. You must use
guidata to save any changes that you make to the handles structure.
It is not sufficient just to set the value of a handles field. See “handles
Structure” on page 8-15 and “GUI Data” on page 9-2 for more information.

• uiwait(handles.mygui), initially commented out, blocks GUI execution
until uiresume is called or the GUI is deleted. Note that uiwait allows the
user access to other MATLAB windows. Remove the comment symbol for
this statement if you want the GUI to be blocking when it opens.

Output Function
The output function returns, to the command line, outputs that are generated
during its execution. It is executed when the opening function returns control
and before control returns to the command line. This means that you must
generate the outputs in the opening function, or call uiwait in the opening
function to pause its execution while other callbacks generate outputs.

• “Function Naming and Template” on page 8-18

• “Input Arguments” on page 8-19

• “Output Arguments” on page 8-19

Function Naming and Template
GUIDE names the output function by appending _OutputFcn to the name of
the M-file. This is an example of an output function template as it might
appear in the mygui M-file.

% --- Outputs from this function are returned to the command line.

function varargout = mygui_OutputFcn(hObject, eventdata,...

handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

8-18

Initialization Callbacks

% Get default command line output from handles structure

varargout{1} = handles.output;

Input Arguments
The output function has three input arguments: hObject, eventdata, and
handles. They are the same as described in “Input Arguments” on page 8-14.

Output Arguments
The output function has one output argument, varargout, which it returns to
the command line. By default, the output function assigns handles.output
to varargout. So the default output is the handle to the GUI, which was
assigned to handles.output in the opening function.

You can change the output by

• Changing the value of handles.output. It can be any valid MATLAB value
including a structure or cell array.

• Adding output arguments to varargout.

varargout is a cell array. It can contain any number of output arguments.
By default, GUIDE creates just one output argument, handles.output. To
create an additional output argument, create a new field in the handles
structure and add it to varargout using a command similar to

varargout{2} = handles.second_output;

8-19

8 Programming a GUIDE GUI

Examples: Programming GUIDE GUI Components

In this section...

“Push Button” on page 8-20

“Toggle Button” on page 8-21

“Radio Button” on page 8-22

“Check Box” on page 8-23

“Edit Text” on page 8-23

“Slider” on page 8-25

“List Box” on page 8-25

“Pop-Up Menu” on page 8-26

“Panel” on page 8-27

“Button Group” on page 8-28

“Axes” on page 8-30

“ActiveX Control” on page 8-33

“Menu Item” on page 8-41

Push Button
This example contains only a push button. Clicking the button, closes the GUI.

This is the push button’s Callback callback. It displays the string Goodbye at
the command line and then closes the GUI.

function pushbutton1_Callback(hObject, eventdata, handles)

8-20

Examples: Programming GUIDE GUI Components

display Goodbye
close(handles.figure1);

Adding an Image to a Push Button or Toggle Button
To add an image to a push button or toggle button, assign the button’s CData
property an m-by-n-by-3 array of RGB values that defines “RGB (Truecolor)
Images”. For example, the array a defines 16-by-64 truecolor image using
random values between 0 and 1 (generated by rand).

a(:,:,1) = rand(16,64);
a(:,:,2) = rand(16,64);
a(:,:,3) = rand(16,64);
set(hObject,'CData',a)

To add the image when the button is created, add the code to the button’s
CreateFcn callback. You may want to delete the value of the button’s String
property, which would usually be used as a label.

See ind2rgb for information on converting a matrix X and corresponding
colormap, i.e., an (X, MAP) image, to RGB (truecolor) format.

Toggle Button
The callback for a toggle button needs to query the toggle button to determine
what state it is in. MATLAB sets the Value property equal to the Max property
when the toggle button is pressed (Max is 1 by default) and equal to the Min
property when the toggle button is not pressed (Min is 0 by default).

The following code illustrates how to program the callback in the GUI M-file.

function togglebutton1_Callback(hObject, eventdata, handles)
button_state = get(hObject,'Value');
if button_state == get(hObject,'Max')
% Toggle button is pressed-take approperiate action

8-21

8 Programming a GUIDE GUI

...
elseif button_state == get(hObject,'Min')
% Toggle button is not pressed-take appropriate action

...
end

You can also change the state of a toggle button programmatically by setting
the toggle button Value property to the value of the Max or Min property. For
example,

set(handles.togglebutton1,'Value','Max')

puts the toggle button with Tag property togglebutton1 in the pressed state.

Note You can use a button group to manage exclusive selection behavior for
toggle buttons. See “Button Group” on page 8-28 for more information.

Radio Button
You can determine the current state of a radio button from within its callback
by querying the state of its Value property, as illustrated in the following
example:

if (get(hObject,'Value') == get(hObject,'Max'))
% Radio button is selected-take approriate action

else
% Radio button is not selected-take approriate action

end

You can also change the state of a radio button programmatically by setting
the radio button Value property to the value of the Max or Min property. For
example,

set(handles.radiobutton1,'Value','Max')

puts the radio button with Tag property radiobutton1 in the selected state.

8-22

Examples: Programming GUIDE GUI Components

Note You can use a button group to manage exclusive selection behavior for
radio buttons. See “Button Group” on page 8-28 for more information.

Check Box
You can determine the current state of a check box from within its callback
by querying the state of its Value property, as illustrated in the following
example:

function checkbox1_Callback(hObject, eventdata, handles)
if (get(hObject,'Value') == get(hObject,'Max'))
% Checkbox is checked-take approriate action

else
% Checkbox is not checked-take approriate action

end

You can also change the state of a check box by programmatically by setting
the check box Value property to the value of the Max or Min property. For
example,

set(handles.checkbox1,'Value','Max')

puts the check box with Tag property checkbox1 in the checked state.

Edit Text
To obtain the string a user types in an edit box, get the String property in
the Callback callback.

function edittext1_Callback(hObject, eventdata, handles)
user_string = get(hObject,'String');
% Proceed with callback

If the edit text Max and Min properties are set such that Max - Min > 1, the
user can enter multiple lines. For example, setting Max to 2, with the default
value of 0 for Min, enables users to enter multiple lines.

8-23

8 Programming a GUIDE GUI

Retrieving Numeric Data from an Edit Text Component
MATLAB returns the value of the edit text String property as a character
string. If you want users to enter numeric values, you must convert the
characters to numbers. You can do this using the str2double command,
which converts strings to doubles. If the user enters nonnumeric characters,
str2double returns NaN.

You can use the following code in the edit text callback. It gets the value of
the String property and converts it to a double. It then checks whether the
converted value is NaN (isnan), indicating the user entered a nonnumeric
character and displays an error dialog (errordlg).

function edittext1_Callback(hObject, eventdata, handles)
user_entry = str2double(get(hObject,'string'));
if isnan(user_entry)
errordlg('You must enter a numeric value','Bad Input','modal')
return

end
% Proceed with callback...

Triggering Callback Execution
If the contents of the edit text component have been changed, clicking inside
the GUI but outside the edit text causes the edit text callback to execute. The
user can also press Enter for an edit text that allows only a single line of text,
or Ctrl+Enter for an edit text that allows multiple lines.

Available Keyboard Accelerators
GUI users can use the following keyboard accelerators to modify the content
of an edit text. These accelerators are not modifiable.

• Ctrl+X — Cut

• Ctrl+C — Copy

• Ctrl+V — Paste

• Ctrl+H — Delete last character

• Ctrl+A — Select all

8-24

Examples: Programming GUIDE GUI Components

Slider
You can determine the current value of a slider from within its callback by
querying its Value property, as illustrated in the following example:

function slider1_Callback(hObject, eventdata, handles)
slider_value = get(hObject,'Value');
% Proceed with callback...

The Max and Min properties specify the slider’s maximum and minimum
values. The slider’s range is Max - Min.

List Box
When the list box Callback callback is triggered, the list box Value property
contains the index of the selected item, where 1 corresponds to the first item
in the list. The String property contains the list as a cell array of strings.

This example retrieves the selected string. It assumes listbox1 is the value
of the Tag property. Note that it is necessary to convert the value returned
from the String property from a cell array to a string.

function listbox1_Callback(hObject, eventdata, handles)
index_selected = get(hObject,'Value');
list = get(hObject,'String');
item_selected = list{index_selected}; % Convert from cell array

% to string

You can also select a list item programmatically by setting the list box Value
property to the index of the desired item. For example,

set(handles.listbox1,'Value',2)

selects the second item in the list box with Tag property listbox1.

Triggering Callback Execution
MATLAB executes the list box’s Callback callback after the mouse button is
released or after certain key press events:

• The arrow keys change the Value property, trigger callback execution, and
set the figure SelectionType property to normal.

8-25

8 Programming a GUIDE GUI

• The Enter key and space bar do not change the Value property but trigger
callback execution and set the figure SelectionType property to open.

If the user double-clicks, the callback executes after each click. MATLAB sets
the figure SelectionType property to normal on the first click and to open on
the second click. The callback can query the figure SelectionType property
to determine if it was a single or double click.

List Box Examples
See the following examples for more information on using list boxes:

• “List Box Directory Reader” on page 10-9 — Shows how to creates a GUI
that displays the contents of directories in a list box and enables users to
open a variety of file types by double-clicking the filename.

• “Accessing Workspace Variables from a List Box” on page 10-16 — Shows
how to access variables in the MATLAB base workspace from a list box GUI.

Pop-Up Menu
When the pop-up menu Callback callback is triggered, the pop-up menu
Value property contains the index of the selected item, where 1 corresponds to
the first item on the menu. The String property contains the menu items as
a cell array of strings.

Note A pop-up menu is sometimes referred to as a drop-down menu or combo
box.

Using Only the Index of the Selected Menu Item
This example retrieves only the index of the item selected. It uses a switch
statement to take action based on the value. If the contents of the pop-up
menu are fixed, then you can use this approach. Else, you can use the index
to retrieve the actual string for the selected item.

function popupmenu1_Callback(hObject, eventdata, handles)
val = get(hObject,'Value');
switch val
case 1

8-26

Examples: Programming GUIDE GUI Components

% User selected the first item
case 2
% User selected the second item
% Proceed with callback...

You can also select a menu item programmatically by setting the pop-up menu
Value property to the index of the desired item. For example,

set(handles.popupmenu1,'Value',2)

selects the second item in the pop-up menu with Tag property popupmenu1.

Using the Index to Determine the Selected String
This example retrieves the actual string selected in the pop-up menu. It
uses the pop-up menu Value property to index into the list of strings. This
approach may be useful if your program dynamically loads the contents of the
pop-up menu based on user action and you need to obtain the selected string.
Note that it is necessary to convert the value returned by the String property
from a cell array to a string.

function popupmenu1_Callback(hObject, eventdata, handles)
val = get(hObject,'Value');
string_list = get(hObject,'String');
selected_string = string_list{val}; % Convert from cell array

% to string
% Proceed with callback...

Panel
Panels group GUI components and can make a GUI easier to understand by
visually grouping related controls. A panel can contain panels and button
groups as well as axes and user interface controls such as push buttons,
sliders, pop-up menus, etc. The position of each component within a panel is
interpreted relative to the lower-left corner of the panel.

Generally, if the GUI is resized, the panel and its components are also
resized. However, you can control the size and position of the panel and its
components. You can do this by setting the GUI Resize behavior to Other
(Use ResizeFcn) and providing a ResizeFcn callback for the panel.

8-27

8 Programming a GUIDE GUI

Note To set Resize behavior for the figure to Other (Use ResizeFcn),
select GUI Options from the Layout Editor Tools menu. See “Cross-Platform
Compatible Units” on page 6-103 for information about the effect of units on
resize behavior.

Button Group
Button groups are like panels except that they manage exclusive selection
behavior for radio buttons and toggle buttons. If a button group contains a
set of radio buttons, toggle buttons, or both, the button group allows only one
of them to be selected. When a user clicks a button, that button is selected
and all others are deselected.

The following figure shows a button group with two radio buttons and two
toggle buttons. Radio Button 1 is selected.

8-28

Examples: Programming GUIDE GUI Components

If a user clicks the other radio button or one of the toggle buttons, it becomes
selected and Radio Button 1 is deselected. The following figure shows the
result of clicking Toggle Button 2.

The button group’s SelectionChangeFcn callback is called whenever a
selection is made. Its hObject input argument contains the handle of the
selected radio button or toggle button.

If you have a button group that contains a set of radio buttons and toggle
buttons and you want:

• An immediate action to occur when a radio button or toggle button is
selected, you must include the code to control the radio and toggle buttons
in the button group’s SelectionChangeFcn callback function, not in the
individual toggle button Callback functions. “Color Palette” on page 15-17
provides a practical example of a SelectionChangeFcn callback.

• Another component such as a push button to base its action on the
selection, then that component’s Callback callback can get the handle
of the selected radio button or toggle button from the button group’s
SelectedObject property.

This example of a SelectionChangeFcn callback uses the Tag property of the
selected object to choose the appropriate code to execute. For GUIDE GUIs,
unlike other callbacks, the hObject argument of the SelectionChangeFcn
callback contains the handle of the selected radio button or toggle button.

function uibuttongroup1_SelectionChangeFcn(hObject,...
eventdata,handles)

8-29

8 Programming a GUIDE GUI

switch get(hObject,'Tag') % Get Tag of selected object
case 'radiobutton1'

% Code for when radiobutton1 is selected.
case 'radiobutton2'

% Code for when radiobutton2 is selected.
case 'togglebutton1'

% Code for when togglebutton1 is selected.
case 'togglebutton2'

% Code for when togglebutton2 is selected.
% Continue with more cases as necessary.
otherwise

% Code for when there is no match.
end

See the uibuttongroup reference page for another example.

Axes
Axes components enable your GUI to display graphics, such as graphs and
images. This topic briefly tells you how to plot to axes components in your
GUI.

• “Plotting to an Axes” on page 8-30

• “Creating Subplots” on page 8-33

Plotting to an Axes
In most cases, you create a plot in an axes from a callback that belongs to
some other component in the GUI. For example, pressing a button might
trigger the plotting of a graph to an axes. In this case, the button’s Callback
callback contains the code that generates the plot.

8-30

Examples: Programming GUIDE GUI Components

The following example contains two axes and two buttons. Clicking one
button generates a plot in one axes and clicking the other button generates a
plot in the other axes. The following figure shows these components as they
might appear in the Layout Editor.

1 Add this code to the Plot 1 push button’s Callback callback. The surf
function produces a 3-D shaded surface plot. The peaks function returns a
square matrix obtained by translating and scaling Gaussian distributions.

surf(handles.axes1,peaks(35));

2 Add this code to the Plot 2 push button’s Callback callback. The contour
function displays the contour plot of a matrix, in this case the output
of peaks.

contour(handles.axes2,peaks(35));

3 Run the GUI by selecting Run from the Tools menu.

8-31

8 Programming a GUIDE GUI

4 Click the Plot 1 button to display the surf plot in the first axes. Click the
Plot 2 button to display the contour plot in the second axes.

See “GUI with Multiple Axes” on page 10-2 for a more complex example that
uses two axes.

Note For information about properties that you can set to control many
aspects of axes behavior and appearance, see “Axes Properties” in the
MATLAB Graphics documentation. For information about plotting in general,
see “Plots and Plotting Tools” in the MATLAB Graphics documentation.

If your GUI contains axes, you should make sure that the Command-line
accessibility option in the GUI Options dialog box is set to Callback (the
default). From the Layout Editor select Tools > GUI Options > Command
Line Accessibility: Callback. See “Command-Line Accessibility” on page
5-10 for more information about how this option works.

8-32

Examples: Programming GUIDE GUI Components

Creating Subplots
Use the subplot function to create axes in a tiled pattern. If your
GUIDE-generated GUI contains components other than the subplots, the
subplots must be contained in a panel.

As an example, the following code uses the subplot function to create an
axes with two subplots in the panel with Tag property uipanel1. This code
is part of the Plot push button Callback callback. Each time you press the
Plot button, the code draws a line in each subplot. a1 and a2 are the handles
of the subplots.

a1=subplot(2,1,1,'Parent',handles.uipanel1);
plot(a1,rand(1,10),'r');
a2=subplot(2,1,2,'Parent',handles.uipanel1);
plot(a2,rand(1,10),'b');

For more information about subplots, see the subplot reference page. For
information about adding panels to your GUI, see “Adding Components to the
GUIDE Layout Area” on page 6-22.

ActiveX Control
This example programs a sample ActiveX control Mwsamp Control. It first
enables a user to change the radius of a circle by clicking on the circle. It then
programs a slider on the GUI to do the same thing.

8-33

8 Programming a GUIDE GUI

• “Programming an ActiveX Control” on page 8-34

• “Programming a User Interface Control to Update an ActiveX Control”
on page 8-37

This topic also discusses:

• “Viewing the Methods for an ActiveX Control” on page 8-38

• “Saving a GUI That Contains an ActiveX Control” on page 8-40

• “Compiling a GUI That Contains an ActiveX Control” on page 8-40

Note See “MATLAB COM Client Support” in the MATLAB External
Interfaces documentation to learn more about ActiveX controls.

Programming an ActiveX Control
The sample ActiveX control Mwsamp Control contains a circle in the
middle of a square. This example programs the control to change the circle
radius when the user clicks the circle, and to update the label to display the
new radius.

1 Add the sample ActiveX control Mwsamp to your GUI and resize it to
approximately the size of the square shown in the preview pane. The
following figure shows the ActiveX control as it appears in the Layout
Editor.

8-34

Examples: Programming GUIDE GUI Components

If you need help adding the component, see “Adding Components to the
GUIDE Layout Area” on page 6-22.

2 Activate the GUI by clicking the button on the toolbar and save the GUI
when prompted. GUIDE displays the GUI shown in the following figure
and opens the GUI M-file.

3 View the ActiveX Properties with the Property Inspector. Select the control
in the Layout Editor, and then select Property Inspector from the View
menu or by clicking the Property Inspector button on the toolbar.

8-35

8 Programming a GUIDE GUI

The following figure shows properties of the mwsamp ActiveX control as they
appear in the Property Inspector. The properties on your system may differ.

This ActiveX control mwsamp has two properties:

• Label, which contains the text that appears at the top of the control

• Radius, the default radius of the circle, which is 20

4 Add the following code to the mswamp control’s Click callback. This code
programs the ActiveX control to change the circle radius when the user
clicks the circle, and updates the label to display the new radius.

hObject.radius = .9*hObject.radius;
hObject.label = ['Radius = ' num2str(hObject.radius)];
refresh(handles.figure1);

To locate the Click callback in the GUI M-file, select View Callbacks from
the View menu and then select Click.

5 Add the following commands to the opening function. This code initializes
the label when you first open the GUI.

handles.activex1.label = ...
['Radius = ' num2str(handles.activex1.radius)];

8-36

Examples: Programming GUIDE GUI Components

Save the M-file. Now, when you open the GUI and click the ActiveX control,
the radius of the circle is reduced by 10 percent and the new value of the
radius is displayed. The following figure shows the GUI after clicking the
circle six times.

If you click the GUI enough times, the circle disappears.

Programming a User Interface Control to Update an ActiveX
Control
This topic continues the previous example by adding a slider to the GUI and
programming the slider to change the circle radius. This example must also
update the slider if the user clicks the circle.

1 Add a slider to your layout and then add the following code to the slider1
Callback callback:

handles.activex1.radius = ...
get(hObject,'Value')*handles.default_radius;

handles.activex1.label = ...
['Radius = ' num2str(handles.activex1.radius)];

refresh(handles.figure1);

The first command

• Gets the Value of the slider, which in this example is a number between
0 and 1, the default values of the slider’s Min and Max properties.

8-37

8 Programming a GUIDE GUI

• Sets handles.activex1.radius equal to the Value times the default
radius.

2 In the opening function, add the default radius to the handles structure.
The activex1_Click callback uses the default radius to update the slider
value if the user clicks the circle.

handles.default_radius = handles.activex1.radius;

3 In the activex1_Click callback, reset the slider’s Value each time the user
clicks the circle in the ActiveX control. The following command causes the
slider to change position corresponding to the new value of the radius.

set(handles.slider1,'Value',...
hObject.radius/handles.default_radius);

When you open the GUI and move the slider by clicking and dragging, the
radius changes to a new value between 0 and the default radius of 20, as
shown in the following figure.

Viewing the Methods for an ActiveX Control
To view the available methods for an ActiveX control, you first need to obtain
the handle to the control. One way to do this is the following:

1 In the GUI M-file, add the command keyboard on a separate line of the
activex1_Click callback. The command keyboard puts MATLAB in

8-38

Examples: Programming GUIDE GUI Components

debug mode and pauses at the activex1_Click callback when you click
the ActiveX control.

2 Run the GUI and click the ActiveX control. The handle to the control is
now set to hObject.

3 To view the methods for the control, enter

methodsview(hObject)

This displays the available methods in a new window, as shown in the
following figure.

Alternatively, you can enter

methods(hObject)

which displays the available methods in the MATLAB Command Window.

8-39

8 Programming a GUIDE GUI

For more information about methods for ActiveX controls, see “Invoking
Methods” in the External Interfaces documentation. See the reference pages
for methodsview and methods for more information about these functions.

Saving a GUI That Contains an ActiveX Control
When you save a GUI that contains ActiveX controls, GUIDE creates a file in
the current directory for each such control. The filename consists of the name
of the GUI followed by an underscore (_) and activexn, where n is a sequence
number. For example, if the GUI is named mygui, then the filename would be
mygui_activex1. The filename does not have an extension.

Compiling a GUI That Contains an ActiveX Control
If you use the MATLAB Compiler mcc command to compile a GUI that
contains an ActiveX control, you must use the -a flag to add the ActiveX
file, which GUIDE saves in the current directory, to the CTF archive. Your
command should be similar to

mcc -m mygui -a mygui_activex1

where mygui_activex1 is the name of the ActiveX file. See the “MATLAB
Compiler” documentation for more information. If you have more than one
such file, use a separate -a flag for each file. You must have installed the
MATLAB Compiler to compile a GUI.

8-40

Examples: Programming GUIDE GUI Components

Menu Item
The Menu Editor generates an empty callback subfunction for every menu
item, including menu titles.

Programming a Menu Title
Because clicking a menu title automatically displays the menu below it, you
may not need to program callbacks at the title level. However, the callback
associated with a menu title can be a good place to enable or disable menu
items below it.

Consider the example illustrated in the following picture.

When a user selects the to file option under the Edit menu’s Copy option,
only the to file callback is required to perform the action.

Suppose, however, that only certain objects can be copied to a file. You can
use the Copy item Callback callback to enable or disable the to file item,
depending on the type of object selected.

Opening a Dialog Box from a Menu Callback
The Callback callback for the to file menu item could contain code such as
the following to display the standard dialog box for saving files.

[file,path] = uiputfile('animinit.m','Save file name');

8-41

8 Programming a GUIDE GUI

'Save file name' is the dialog box title. In the dialog box, the filename field
is set to animinit.m, and the filter set to M-files (*.m). For more information,
see the uiputfile reference page.

Updating a Menu Item Check
A check is useful to indicate the current state of some menu items. If you
selected Check mark this item in the Menu Editor, the item initially
appears checked. Each time the user selects the menu item, the callback for
that item must turn the check on or off. The following example shows you how
to do this by changing the value of the menu item’s Checked property.

if strcmp(get(hObject, 'Checked'),'on')
set(hbject,'Checked','off');

else
set(hObject,'Checked','on');

end

hObject is the handle of the component, for which the callback was triggered.
The strcmp function compares two strings and returns logical 1 (true) if the
two are identical and logical 0 (false) otherwise.

8-42

Examples: Programming GUIDE GUI Components

Use of checks when the GUI is first displayed should be consistent with the
display. For example, if your GUI has an axes that is visible when a user first
opens it and the GUI has a Show axes menu item, be sure to set the menu
item’s Checked property on when you create it so that a check appears next to
the Show axes menu item initially.

Note From the Menu Editor, you can view a menu item’s Callback callback
in your editor by selecting the menu item and clicking the View button.

8-43

8 Programming a GUIDE GUI

8-44

9

Managing and Sharing
Application Data in GUIDE

Mechanisms for Managing Data
(p. 9-2)

Describes various mechanisms for
managing application-defined data.
Explains how GUIDE uses several of
these mechanisms.

Sharing Data Among a GUI’s
Callbacks (p. 9-8)

Shows how each mechanism for
managing data can be used to share
data among a GUI’s callbacks.

Making Multiple GUIs Work
Together (p. 9-15)

Ways and means to communicate
application-defined data between
multiple GUIs

9 Managing and Sharing Application Data in GUIDE

Mechanisms for Managing Data

In this section...

“Overview” on page 9-2

“GUI Data” on page 9-2

“Application Data” on page 9-5

“UserData Property” on page 9-6

Overview
Most GUIs generate or use data that is specific to the application. This topic
describes the three mechanisms for managing application-defined data in the
GUI environment. These mechanisms provide a way for applications to save
and retrieve data stored with the GUI.

The GUI data and application data mechanisms are similar but GUI data
can be simpler to use. GUIDE specifically uses GUI data to manage the
handles structure, but you can use either the GUI data handles structure or
application data to manage application-defined data. The UserData property
can also hold application-defined data.

GUI Data
GUI data is managed using the guidata function. This function can store
a single variable as GUI data. It is also used to retrieve the value of that
variable.

• “About GUI Data” on page 9-2

• “GUI Data in GUIDE” on page 9-3

• “Adding Fields to the handles Structure” on page 9-4

• “Changing GUI Data in an M-File Generated by GUIDE” on page 9-4

About GUI Data
GUI data is always associated with the GUI figure. It is available to all
callbacks of all components of the GUI. If you specify a component handle

9-2

Mechanisms for Managing Data

when you save or retrieve GUI data, MATLAB automatically associates the
data with the component’s parent figure.

GUI data can contain only one variable at any time. Writing GUI data
overwrites the existing GUI data. For this reason, GUI data is usually defined
to be a structure to which you can add fields as you need them.

GUI data provides application developers with a convenient interface to
a figure’s application data:

• You do not need to create and maintain a hard-coded name for the data
throughout your source code.

• You can access the data from within a callback routine using the
component’s handle, without having to find the figure handle. For GUIDE
users, the object handle is automatically passed to each callback as
hObject.

GUI Data in GUIDE
GUIDE uses guidata to create and maintain the handles structure. The
handles structure contains the handles of all components in the GUI. GUIDE
automatically passes the handles structure to every callback as an input
argument.

In a GUI created using GUIDE, you cannot use guidata to manage any
variable other than the handles structure. If you do, you may overwrite the
handles structure and your GUI will not work. If you want to use GUI data to
share application-defined data among callbacks, you must save the data in
fields that you add to the handles structure.

The GUIDE templates use the handles structure to store application-defined
data. See “Selecting a GUI Template” on page 6-7 for information about the
templates.

Note For more information, see “handles Structure” on page 8-15.

9-3

9 Managing and Sharing Application Data in GUIDE

Adding Fields to the handles Structure
To add a field to the handles structure, which is passed as an argument to
every callback in GUIDE.

1 Assign a value to the new field. This adds the field to the structure. For
example

handles.number_errors = 0;

adds the field number_errors to the structure handles and sets it to 0.

2 Use the following command to save the data.

guidata(hObject,handles)

where hObject is the handle of the component for which the callback was
triggered. It is passed automatically to every callback.

Changing GUI Data in an M-File Generated by GUIDE
In a GUIDE-generated M-file, GUI data is always represented by the handles
structure. This example updates the handles structure and then saves it.

1 Assume that the handles structure contains an application-defined field
handles.when whose value is 'now'.

2 In a GUI callback, make the desired change to the handles structure. This
step changes the value of handles.when to 'later', but does not save
the handles structure.

handles.when = 'later';

3 Save the changed version of the handles structure with the command

guidata(hObject,handles)

where hObject, which is passed automatically to every callback, is the
handle of the component for which the callback was triggered. If you do
not save the handles structure with guidata, the change you made to it
in the previous step is lost.

9-4

Mechanisms for Managing Data

Application Data
Application data provides a way for applications to save and retrieve data
associated with a specified object. For a GUI, this is usually the GUI figure
but can also be any component. The data is stored as name/value pairs.
Application data enables you to create what are essentially user-defined
properties for an object.

The following table summarizes the functions that provide access to
application data. For more detailed information, see the individual function
reference pages.

Functions for Managing Application Data

Function Purpose

setappdata Specify named application data for an object. The object
does not have to be a figure. You can specify more than one
named application data for an object. However, each name
must be unique for that object and can be associated with
only one value, usually a structure.

getappdata Retrieve named application data. To retrieve named
application data, you must know the name associated with
the application data and the handle of the object with which
it is associated.

isappdata True if the named application data exists.

rmappdata Remove the named application data.

Creating Application Data in GUIDE
Use the setappdata function to create application data. This example
generates a 35-by-35 matrix of normally distributed random numbers in the
opening function and creates application data mydata to manage it.

function mygui_OpeningFcn(hObject, eventdata, handles, varargin)
matrices.rand_35 = randn(35);
setappdata(hObject,'mydata',matrices);

Because this code appears in the opening function, hObject is the handle of
the GUI figure, and the code associates mydata with the figure.

9-5

9 Managing and Sharing Application Data in GUIDE

Adding Fields to an Application Data Structure in GUIDE
Application data is usually defined as a structure to enable you to add fields
as necessary. In this example, a push button adds a field to the application
data structure mydata created in the previous topic.

1 Use getappdata to retrieve the structure.

From the example in the previous topic, the name of the application data
structure is mydata. It is associated with the figure whose Tag is figure1.
Since the handles structure is passed to every callback, the code can
specify the figure’s handle as handles.figure1.

function mygui_pushbutton1(hObject, eventdata, handles)
matrices = getappdata(handles.figure1,'mydata');

2 Create a new field and assign it a value. For example

matrices.randn_50 = randn(50);

adds the field randn_50 to the matrices structure and sets it to a 50-by-50
matrix of normally distributed random numbers.

3 Use setappdata to save the data. This example uses setappdata to save
the matrices structure as the application data structure mydata.

setappdata(handles.figure1,'mydata',matrices);

UserData Property
All GUI components, including menus, and the figure have a UserData
property. You can assign any valid MATLAB value to the UserData property.
To retrieve the data, a callback must know the handle of the component with
which the data is associated.

1 In this example, an edit text component stores the user-entered string in
its UserData property.

function mygui_edittext1(hObject, eventdata, handles)
mystring = get(hObject,'String');
set(hObject,'UserData',mystring);

9-6

Mechanisms for Managing Data

2 A push button retrieves the string from the edit text component UserData
property. The callback uses the handles structure and the edit text Tag
property, edittext1, to specify the edit text handle.

function mygui_pushbutton1(hObject, eventdata, handles)
string = get(handles.edittext1,'UserData');

9-7

9 Managing and Sharing Application Data in GUIDE

Sharing Data Among a GUI’s Callbacks

In this section...

“GUI Data” on page 9-8

“Application Data” on page 9-11

“UserData Property” on page 9-12

GUI Data
GUI data, which you manage with the guidata function, is accessible to all
callbacks of the GUI. A callback for one component can set a value in GUI
data, which can then be read by a callback for another component. See “GUI
Data” on page 9-2 for more information about GUI data.

GUI Data Example: Passing Data Between Components
This example uses a GUI that contains a slider and an edit text component as
shown in the following figure. A static text component instructs the user to
enter a value in the edit text or click the slider. The example uses GUI data to
initialize and maintain an error counter.

The GUI behavior is as follows:

9-8

Sharing Data Among a GUI’s Callbacks

• When a user moves the slider, the edit text component displays the slider’s
current value.

• When a user types a value into the edit text component, the slider updates
to this value.

• If a user enters a value in the edit text that is out of range for the slider
— that is, a value that is not between 0 and 1 — the application returns a
message in the edit text component indicating how many times the user
has entered an erroneous value.

The commands given in the following steps initialize the error counter and
implement the interchange between the slider and the edit text component.

1 Define the error counter in the opening function. The GUI records
the number of times a user enters an erroneous value in the edit text
component and stores this number in a field of the handles structure.

Start by defining this field, called number_errors, in the opening function
as follows:

handles.number_errors = 0;

Type the preceding statement before the following line, which GUIDE
automatically inserts into the opening function.

guidata(hObject,handles); % Save the updated handles structure.

The guidata command saves the modified handles structure so that it can
be retrieved in the GUI’s callbacks.

2 Set the value of the edit text component String property from the slider
Callback callback. The following command in the slider Callback updates
the value displayed in the edit text component when a user moves the
slider and releases the mouse button.

set(handles.edittext1,'String',...
num2str(get(handles.slider1,'Value')));

The code combines three commands:

• The get command obtains the current value of the slider.

9-9

9 Managing and Sharing Application Data in GUIDE

• The num2str command converts the value to a string.

• The set command sets the String property of the edit text to the
updated value.

3 Set the slider value from the edit text component’s Callback callback. The
edit text Callback sets the slider’s value to the number the user types in,
after checking to see if it is a single numeric value between 0 and 1. If the
value is out of range, then the error count is incremented and the edit text
displays a message telling the user how many times they have entered
an invalid number. Because this code appears in the edit text Callback,
hObject is the handle of the edit text component.

val = str2double(get(hobject,'String'));
% Determine whether val is a number between 0 and 1.
if isnumeric(val) && length(val)==1 && ...

val >= get(handles.slider1,'Min') && ...
val <= get(handles.slider1,'Max')
set(handles.slider1,'Value',val);

else
% Increment the error count, and display it.

handles.number_errors = handles.number_errors+1;
guidata(hObject,handles); % Store the changes.
set(hobject,'String',...
['You have entered an invalid entry ',...

num2str(handles.number_errors),' times.']);
end

If the user types a number between 0 and 1 in the edit text component
and then presses Enter or clicks outside the edit text, the Callback sets
handles.slider1 to the new value and the slider moves to the corresponding
position.

If the entry is invalid — for example, 2.5 — the GUI increments the value
of handles.number_errors and displays a message like the following in the
edit text component:

9-10

Sharing Data Among a GUI’s Callbacks

Application Data
Application data can be associated with any object — a component, menu, or
the figure itself. To access application data, a callback must know the name of
the data and the handle of the component with which it is associated. Use the
functions setappdata, getappdata, isappdata, and rmappdata to manage
application data.

See “Application Data” on page 9-5 for more information about application
data.

Application Data Example: Passing Data Between Components
The previous topic, “GUI Data Example: Passing Data Between Components”
on page 9-8, uses GUI data to initialize and maintain an error counter. This
example shows you how to do the same thing using application data. Refer to
the previous topic for details of the example.

1 Define the error counter in the opening function. Add the following code
to the opening function. This code first creates a structure slider_data,
then assigns it to the named application data slider. Because this code
appears in the opening function, using hObject associates the application
data with the figure.

slider_data.number_errors = 0;
setappdata(hObject,'slider',slider_data);

2 Set the value of the edit text String property from the slider Callback
callback. Before you can do this, you must convert the slider Value property
to a string. Add this statement to the callback.

set(handles.edittext1,'String',num2str(get(hObject,'Value')));

Because this statement appears in the slider Callback, hObject is the
handle of the slider.

9-11

9 Managing and Sharing Application Data in GUIDE

3 Set the slider value from the edit text component’s Callback callback. Add
this code to the callback. It assumes the figure’s Tag property is figure1.

To update the number of errors, the code must first retrieve the named
application data slider, then increment the count. It then saves the
application data and displays the new error count.

val = str2double(get(hObject,'String'));
% Determine whether val is a number between 0 and 1.
if isnumeric(val) && length(val)==1 && ...

val >= get(handles.slider1,'Min') && ...
val <= get(handles.slider1,'Max')
set(handles.slider1,'Value',val);

else
% Retrieve and increment the error count.

slider_data = getappdata(handles.figure1,'slider');
slider_data.number_errors = slider_data.number_errors+1;

% Save the changes.
setappdata(handles.figure1,'slider',slider_data);

% Display new total.
set(hObject,'String',...
['You have entered an invalid entry ',...

num2str(slider_data.number_errors),' times.']);
end

UserData Property
Every GUI component, and the figure itself, has a UserData property that you
can use to store application-defined data. To access UserData, a callback must
know the handle of the component with which the property is associated.

Use the get function to retrieve UserData, and the set function to set it.

UserData Property Example: Passing Data Between
Components
A previous topic, “GUI Data Example: Passing Data Between Components”
on page 9-8, uses GUI data to initialize and maintain an error counter. This
example shows you how to do the same thing using the edit text component’s
UserData property to store the error count. Refer to the GUI data example for
example details.

9-12

Sharing Data Among a GUI’s Callbacks

1 Initialize the edit text component UserData property in the opening
function by adding the following code to the opening function. This code
initializes the data in a structure to allow for other data that may be needed.

data.number_errors = 0;
set(handles.edittext1,'UserData',data.number_errors)

Note Alternatively, you could add a CreateFcn callback for the edit text,
and initialize the error counter there.

2 Set the edit text value from the slider Callback callback. Add this
statement to the callback.

set(handles.edittext1,'String',...
num2str(get(hObject,'Value')));

where hObject is the handle of the slider.

3 Set the slider value from the edit text Callback callback. To do this, add
the following code to the callback.

To update the number or errors, the code must first retrieve the value of the
edit text UserData property, then increment the count. It then saves the
updated error count in the UserData property and displays the new count.

val = str2double(get(hObject,'String'));
% Determine whether val is a number between 0 and 1.
if isnumeric(val) && length(val)==1 && ...

val >= get(handles.slider1,'Min') && ...
val <= get(handles.slider1,'Max')
set(handles.slider1,'Value',val);

else
% Retrieve and increment the error count.

data = get(hObject,'UserData');
data.number_errors = data.number_errors+1;

% Save the changes.
set(hObject,'UserData',data);

% Display new total.
set(hObject,'String',...

9-13

9 Managing and Sharing Application Data in GUIDE

['You have entered an invalid entry ',...
num2str(number_errors),' times.']);
end

Because this code appears in the edit text Callback, hObject is the handle
of the edit text component.

9-14

Making Multiple GUIs Work Together

Making Multiple GUIs Work Together

In this section...

“Overview of Data Sharing Techniques” on page 9-15

“Example — A GUIDE GUI with a Modal Dialog for User Input” on page
9-17

“Example — Individual GUIDE GUIs that Work Together as an Application”
on page 9-23

Overview of Data Sharing Techniques
Although most GUIs created in GUIDE use single figures, you can make
several GUIDE-generated GUIs work together if your application requires
more than a single figure. For example, your GUI may need to use several
dialogs to display and obtain some of the parameters used by the GUI, or your
GUI may include several individual tools that work together, either at the
same time or in succession. This section describes the different techniques
you can use to share data among multiple GUIDE GUIs to make them operate
together. It also provides examples that show you how to use these techniques
to make a set of GUIs cooperate with one another.

GUIs can share data in many ways. In a given application, more than one
technique can be—and often is—used. Without resorting to communicating
via files or workspace variables, you can use any of the approaches described
in this table.

Data Sharing Method How it Works Use for

Property/Value pairs Send data into a newly
invoked or existing GUI
by passing it along as
input arguments.

Communicating data to
new GUIs

9-15

9 Managing and Sharing Application Data in GUIDE

Data Sharing Method How it Works Use for

Output Return data from the
invoked GUI.

Communicating data
back to the invoking
GUI, such as passing
back the handles
structure of the invoked
GUI

Function Handles Pass function handles
as data through one
of the three following
methods.

Exposing functionality
of the GUI within a
GUI or between GUIs

userdata Store data in a
figure or component;
communicate to other
GUIs via handle
references.

Communicating data
within a GUI or
between GUIs

getappdata/setappdata Store data as a
property in a figure
or component;
communicate to other
GUIs via handle
references

Communicating data
within a GUI or across
GUIs

guidata Store data in the
handles structure of
a GUI; communicate to
other GUIs via handle
references.

Communicating data
within a GUI or across
GUIs; a convenient way
to manage application
data

The techniques described in “Sharing Data Among a GUI’s Callbacks” on
page 9-8 that enable you to share data within a GUI—userdata, application
data, and guidata—can also share data between several GUIs as long as the
handles to objects in the first GUI are made available to other GUIs. The rest
of this section provides two examples that illustrate these techniques. The
first example describes how a simple GUI can open and receive data from a
modal dialog. The second, more extensive, example illustrates how the three
components of an icon editor are made to interact.

9-16

Making Multiple GUIs Work Together

Note The examples that follow omit portions of code in order to more clearly
convey data sharing techniques. The omissions are noted by ellipses like
these:

.

.

.

Complete M-files and FIG-files that you can run, view, and modify are
provided for the examples.

Example — A GUIDE GUI with a Modal Dialog for
User Input

• “Opening the Text Change Dialog” on page 9-18

• “Managing the Text Change Dialog” on page 9-19

• “Protecting the Text Change Dialog” on page 9-20

• “Positioning the Text Change Dialog” on page 9-21

• “Initializing the Text Change Dialog’s Text” on page 9-22

• “Canceling the Text Change Dialog” on page 9-22

• “Applying the Text Change” on page 9-23
This simple example demonstrates how data is passed to a modal dialog
invoked from a GUIDE GUI. The dialog displays text data in an edit field in
the dialog. Any changes to it that the user makes are passed back to the
main GUI. That data can be used by the main GUI in various ways. In this
example, the data updates the appearance of one of the components of the
main GUI. The example illustrates how to do many common tasks involved in
making multiple GUIs work together, for example, how to position a second
GUI relative to the main GUI.

The main GUI contains one pushbutton and a static text field giving
instructions. Clicking the button opens a modal dialog box. In it, the button’s
current string displays in an editable text field, and the user can change it. If
the user clicks OK, the value of the text field is returned to the main GUI,

9-17

9 Managing and Sharing Application Data in GUIDE

which sets the string property of its button to be that value. The main GUI
and its modal dialog box are shown in the following figure.

Note The following links execute MATLAB commands and work only within
the MATLAB Help browser. If you are reading this on the Web or in the PDF,
go to the corresponding section in the MATLAB Help Browser to use the links.

• Click here to display the changeme GUIs in the Layout Editor.

• Click here to display the changeme GUI M-files in the editor.

Opening the Text Change Dialog
Clicking the Change Me button causes the Text Change dialog to be invoked.
When invoking the dialog, arguments include a property/value pair with name
'changeme_main' (the main GUI’s name) and value set to the handle to the
main figure. This data enables the dialog to access the main GUI’s data; if it
is missing, the dialog displays an error that describes proper usage and exits.

function buttonChangeMe_Callback(hObject, ...
eventdata, handles)

changeme_dialog('changeme_main', handles.figure);

9-18

Making Multiple GUIs Work Together

Managing the Text Change Dialog
The Text Change dialog should be modal. In the Property Inspector for the
Text Change dialog’s figure, set the 'WindowStyle' property to 'Modal'. This
ensures that the user can interact with no other figures while it is active.

To ensure proper behavior, use uiwait in the OpeningFcn of the dialog.
Invoking uiwait puts off calling the output function until uiresume is called.
This also keeps the invocation call of the GUI from returning until that time:

function changeme_dialog_OpeningFcn(hObject, ...
eventdata, handles, varargin)

.

.

.
uiwait(hObject);
.
.
.

Every callback in which the GUI needs to close should call uiresume. In this
example, it can happen in the CloseRequestFcn for the figure, the Cancel
button, and the OK button:

function buttonCancel_Callback(hObject, ...
eventdata, handles)

uiresume(handles.figure);

function figure_CloseRequestFcn(hObject, ...
eventdata, handles)

uiresume(hObject);

function buttonOK_Callback(hObject, e...
ventdata, handles)

.

.

.
uiresume(handles.figure);

In the OutputFcn, make sure to delete the figure, so that it closes:

function varargout = changeme_dialog_Dialog_OutputFcn(hObject, ...

9-19

9 Managing and Sharing Application Data in GUIDE

eventdata, handles)
varargout{1} = [];
delete(hObject);

Protecting the Text Change Dialog
If the Text Change dialog is not invoked from the main GUI, it displays an
error and exits. The OpeningFcn for the dialog scans the input arguments for
the changeme_main property. If it isn’t found or has a value that is not valid,
the modal dialog displays a message and then destroys itself. To be able to
exit immediately, do not call uiwait until after validating the input. If uiwait
is not called, the dialog immediately calls its OutputFcn and returns. As
described earlier, the OutputFcn closes the figure.

function changeme_dialog_OpeningFcn(hObject, ...
eventdata, handles, varargin)

% Check to see the changeme_main gui is passed in
dontOpen = false;
mainGuiInput = find(strcmp(varargin, 'changeme_main'));
if (isempty(mainGuiInput))

|| (length(varargin) <= mainGuiInput)
|| (~ishandle(varargin{mainGuiInput+1}))

dontOpen = true;
else
.
.
.
end
.
.
.
if dontOpen

disp('---');
disp('Improper input arguments. Pass a property value pair')
disp('whose name is "changeme_main" and value is the handle')
disp('to the changeme_main figure.');
disp('eg:');
disp(' x = changeme_main()');
disp(' changeme_dialog('changeme_main', x)');

9-20

Making Multiple GUIs Work Together

disp('---');
else

uiwait(hObject);
end

Positioning the Text Change Dialog
The Text Change dialog (changeme_dialog) should position itself close to the
invoking figure. To avoid distracting the user, the dialog box appears next
to the main GUI. If the main figure is moved somewhere and the dialog is
invoked, it opens in a different location from where it would have otherwise.
Using the passed-in handle to the main figure, get the main figure’s position
and do some calculations to offset the dialog box to the right and down:

function changeme_dialog_OpeningFcn(hObject, ...
eventdata, handles, varargin)

.

.

.
mainGuiInput = find(strcmp(varargin, 'changeme_main'));
.
.
.
handles.changeMeMain = varargin{mainGuiInput+1};
.
.
.

% Position to be relative to parent:
parentPosition = getpixelposition(handles.changeMeMain);
currentPosition = get(hObject, 'Position');
% Sets the position to be directly centered on the main figure
newX = parentPosition(1) + (parentPosition(3)/2 ...

- currentPosition(3)/2);
newY = parentPosition(2) + (parentPosition(4)/2 ...

- currentPosition(4)/2);
newW = currentPosition(3);
newH = currentPosition(4);

set(hObject, 'Position', [newX, newY, newW, newH]);
.

9-21

9 Managing and Sharing Application Data in GUIDE

.

.

Initializing the Text Change Dialog’s Text
Initialize the Text Change dialog’s text to the Change Me button’s current
text. From the main GUI’s handle that was passed to the modal dialog, get
the main GUI’s handles structure. From that, get the Change Me button and
get its String property. Then set the String property to the edit box’s value
in the dialog’s OpeningFcn:

function changeme_dialog_OpeningFcn(hObject, ...
eventdata, handles, varargin)

mainGuiInput = find(strcmp(varargin, 'changeme_main'));
.
.
.
% Remember the handle, and adjust our position
handles.changeMeMain = varargin{mainGuiInput+1};

% Set the initial text
mainHandles = guidata(handles.changeMeMain);
set(handles.editChangeMe, 'String',

get(mainHandles.buttonChangeMe, 'String'));
.
.
.

Canceling the Text Change Dialog
If Cancel is clicked or the window is closed, do not modify the main GUI.
There is really nothing to do, other than to call uiresume to close the modal
dialog:

function buttonCancel_Callback(hObject, ...
eventdata, handles)

uiresume(handles.figure);

function figure_CloseRequestFcn(hObject, ...
eventdata, handles)

9-22

Making Multiple GUIs Work Together

uiresume(hObject);

Applying the Text Change
If OK is clicked, set the main GUI’s Change Me button label to the value of
the textbox. This is where the main GUI gets modified. The modal dialog’s
OpeningFcn saved the reference to the main GUI in the handles structure.
Now use that reference to get the main GUI’s handles, and from that get the
button’s handle and modify its text:

function buttonOK_Callback(hObject, ...
eventdata, handles)

text = get(handles.editChangeMe, 'String');
main = handles.changeMeMain;
mainHandles = guidata(main);
changeMeButton = mainHandles.buttonChangeMe;
set(changeMeButton, 'String', text);
uiresume(handles.figure);

Example — Individual GUIDE GUIs that Work
Together as an Application
The following example demonstrates creating an icon editor application in
GUIDE. The editor consists of three GUIs:

• The drawing area (Icon Editor)

• The tool selection toolbar (Tool Palette)

• The color picker (Color Palette)

These GUIs share data and expose functionality to one another using several
different techniques.

9-23

9 Managing and Sharing Application Data in GUIDE

9-24

Making Multiple GUIs Work Together

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this on the Web
or in the PDF, go to the corresponding section in the MATLAB Help Browser
to use the links.

• Click here to display the icon editor GUIs in the Layout Editor.

• Click here to display the icon editor GUI M-files in the MATLAB editor.

Requirements for the GUIs
The Icon Editor application needs to behave as follows:

• When starting Icon Editor, create the Tool Palette and Color Palette.

• Set the initial color on the Color Palette when Icon Editor starts.

• Give the Icon Editor access to the Color Palette’s current color.

• When clicking in the editing area, apply the currently selected tool from
the Tool Palette.

• When the mouse pointer is over the edit area, display the current tool’s
cursor

• Close all windows only when the Icon Editor completes.

Click any item above to jump to that section.

M-file Implementations
This application uses three M-files and FIG-files that were fully implemented
in GUIDE. You can modify and enhance them in the GUIDE environment
should you choose to do so. The FIG-files are:

• guide_iconeditor.fig — Main GUI, for drawing and modifying icon files

• guide_colorpalette.fig — Palette for selecting a current color

• guide_toolpalette.fig — Palette for selecting one of four editing tools

The associated M-files contain the following functions and signatures:

9-25

9 Managing and Sharing Application Data in GUIDE

• guide_iconeditor.m

guide_iconeditor(varargin)
guide_iconeditor_OpeningFcn(hObject, eventdata, handles, varargin)
guide_iconeditor_OutputFcn(hObject, eventdata, handles)
editFilename_CreateFcn(hObject, eventdata, handles)
buttonImport_Callback(hObject, eventdata, handles)
buttonOK_Callback(hObject, eventdata, handles
buttonCancel_Callback(hObject, eventdata, handles)
editFilename_ButtonDownFcn(hObject, eventdata, handles)
editFilename_Callback(hObject, eventdata, handles)
figure_CloseRequestFcn(hObject, eventdata, handles)
figure_WindowButtonDownFcn(hObject, eventdata, handles)
figure_WindowButtonUpFcn(hObject, eventdata, handles)
figure_WindowButtonMotionFcn(hObject, eventdata, handles)
getToolPalette(handles)
getColorPalette(handles)
setColor(hObject, color)
getColor(hObject)
updateCursor(hObject, overicon)
applyCurrentTool(handles)
localUpdateIconPlot(handles)
localGetIconCDataWithNaNs(handles)

• guide_colorpalette.m

guide_colorpalette(varargin)
guide_colorpalette_OpeningFcn(hObject, eventdata, handles, varargin)
guide_colorpalette_OutputFcn(hObject, eventdata, handles)
buttonMoreColors_Callback(hObject, eventdata, handles)
colorCellCallback(hObject, eventdata, handles)
figure_CloseRequestFcn(hObject, eventdata, handles)
localUpdateColor(handles)
setSelectedColor(hObject, color)

• guide_toolPalatte.m

guide_toolpalette(varargin)
guide_toolpalette_OpeningFcn(hObject, eventdata, handles, varargin)
guide_toolpalette_OutputFcn(hObject, eventdata, handles)
toolPencil_CreateFcn(hObject, eventdata, handles)

9-26

Making Multiple GUIs Work Together

toolEraser_CreateFcn(hObject, eventdata, handles)
toolBucket_CreateFcn(hObject, eventdata, handles)
toolPicker_CreateFcn(hObject, eventdata, handles)
toolPalette_SelectionChangeFcn(hObject, eventdata, handles)
figure_CloseRequestFcn(hObject, eventdata, handles)
getIconEditor(handles)
pencilToolCallback(handles, toolstruct, cdata, point)
eraserToolCallback(handles, toolstruct, cdata, point)
bucketToolCallback(handles, toolstruct, cdata, point)
fillWithColor(cdata, rows, cols, color, row, col, seedcolor)
colorpickerToolCallback(handles, toolstruct, cdata, point)

1. When Icon Editor launches, create the Tool Palette and
Color Palette
Starting the Icon Editor GUI should launch the Tool Palette and Color Palette.
These GUIs are its children. The parent and children communicate using the
following techniques:

• Property/Value pairs — Send data into a newly-invoked or existing GUI
by passing it as input arguments.

• Guidata — Store data in the handles structure of a GUI; this can
communicate data within one GUI or across several of them.

• Output — Returned data from the invoked GUI; this is used to
communicate data, such as the handles structure of the invoked GUI, back
to the invoking GUI.

The Icon Editor is passed into the Tool Palette and Color Palette as a
Property/Value (p/v) pair in order to let the Tool Palette make calls back into
Icon Editor. The output value from calling both of the palettes is the handle to
their GUI figures. These figure handles are saved into the handles structure
of Icon Editor:

% in Icon Editor
function guide_Icon Editor_OpeningFcn(hObject, ...

eventdata, handles, varargin)
.

9-27

9 Managing and Sharing Application Data in GUIDE

.

.
handles.colorPalette = guide_colorpalette('iconEditor', hObject);
handles.toolPalette = guide_toolpalette('iconEditor', hObject);
.
.
.
% Update handles structure
guidata(hObject, handles);

The Color Palette needs to remember the Icon Editor for later:

% in colorPalette
function guide_colorpalette_OpeningFcn(hObject, ...

eventdata, handles, varargin)
handles.output = hObject;
.
.
.
handles.iconEditor = [];

iconEditorInput = find(strcmp(varargin, 'iconEditor'));
if ~isempty(iconEditorInput)

handles.iconEditor = varargin{iconEditorInput+1};
end
.
.
.
% Update handles structure
guidata(hObject, handles);

The Tool Palette also needs to remember the Icon Editor:

% in toolPalette
function guide_toolpalette_OpeningFcn(hObject, ...

eventdata, handles, varargin)
handles.output = hObject;
.
.
.
handles.iconEditor = [];

9-28

Making Multiple GUIs Work Together

iconEditorInput = find(strcmp(varargin, 'iconEditor'));
if ~isempty(iconEditorInput)

handles.iconEditor = varargin{iconEditorInput+1};
end
.
.
.
% Update handles structure
guidata(hObject, handles);

2. Set the initial color on the Color Palette when the Icon Editor
starts
After all three GUIs have been created, set the initial color. When the Color
Palette is invoked from the Icon Editor, the Color Palette needs to tell the Icon
Editor how to set the initial color and provides the functionality via a function
handle, which it stores in its handles structure. Color Palette outputs the
handle to its figure, from which its handles structure can be retrieved:

% in colorPalette
function guide_colorpalette_OpeningFcn(hObject, ...

eventdata, handles, varargin)
handles.output = hObject;
.
.
.
% Set the initial palette color to black
handles.mSelectedColor = [0 0 0];

% Publish the function setSelectedColor
handles.setColor = @setSelectedColor;
.
.
.
% Update handles structure
guidata(hObject, handles);

% in colorPalette

9-29

9 Managing and Sharing Application Data in GUIDE

function setSelectedColor(hObject, color)
handles = guidata(hObject);
.
.
.
handles.mSelectedColor =color;
.
.
.
guidata(hObject, handles);

Call the publicized function from the Icon Editor, setting the initial color
to 'red':

% in Icon Editor
function guide_iconeditor_OpeningFcn(hObject, ...

eventdata, handles, varargin)
.
.
.
handles.colorPalette = guide_colorpalette('iconEditor', hObject);
.
.
.
colorPalette = handles.colorPalette;
colorPaletteHandles = guidata(colorPalette);
colorPaletteHandles.setColor(colorPalette, [1 0 0]);
.
.
.
% Update handles structure
guidata(hObject, handles);

3. Give the Icon Editor access to the Color Palette’s current color
The Color Palette initializes the current color data:

%in colorPalette
function guide_colorpalette_OpeningFcn(hObject, ...

eventdata, handles, varargin)
handles.output = hObject;

9-30

Making Multiple GUIs Work Together

.

.

.
handles.mSelectedColor = [0 0 0];
.
.
.
% Update handles structure
guidata(hObject, handles);

The Icon Editor retrieves the inital color from the Color Palette’s guidata via
its handles structure:

% in Icon Editor
function color = getColor(hObject)
handles = guidata(hObject);
colorPalette = handles.colorPalette;
colorPaletteHandles = guidata(colorPalette);
color = colorPaletteHandles.mSelectedColor;

4. When clicking in the editing area, apply the currently
selected tool from the Tool Palette
This example demonstrates how the UserData property of components in your
GUIDE GUI can be used to share data. Every tool in the Tool Palette can
modify the icon being edited, altering CData whatever tool is selected when
the mouse is clicked in the icon editing area. The UserData property of each
tool is used to record the function called when a tool is selected and applied
to the icon editing area. Different tools do different things to the icon data.
The following code shows how the pencil tool works.

In the CreateFcn for the pencil button, add the user data that points to the
function for the pencil tool:

% in toolPalette
function toolPencil_CreateFcn(hObject, eventdata, handles)
set(hObject,'UserData', struct('Callback', @pencilToolCallback));

The currently selected tool is tracked by the Tool Palette in a field in its
handles structure called mCurrentTool, which you can get from other GUIs

9-31

9 Managing and Sharing Application Data in GUIDE

once you have the handles structure of the Tool Palette. The currently selected
tool is set by calling guidata after you click a button in the Tool Palette:

% in toolPalette
function toolPalette_SelectionChangeFcn(hObject, ...

eventdata, handles)
handles.mCurrentTool = hObject;
guidata(hObject, handles);

When you select the pencil tool and click in the icon editing area, the function
of the pencil tool is eventually called by the Icon Editor:

% in iconEditor
function iconEditor_WindowButtonDownFcn(hObject,...

eventdata, handles)
toolPalette = handles.toolPalette;
toolPaletteHandles = guidata(toolPalette);
.
.
.

userData = get(toolPaletteHandles.mCurrentTool, 'UserData');
handles.mIconCData = userData.Callback(toolPaletteHandles, ...

toolPaletteHandles.mCurrentTool, handles.mIconCData, ...);

If you are curious about what the pencil tool does, here is the code that shows
how the pixel value in the icon editing area under the mouse click (the Tool
icon’s CData) is changed to the color currently selected in the Color Palette:

% in toolPalette
function cdata = pencilToolCallback(handles, toolstruct, cdata,...)
iconEditor = handles.iconEditor;
iconEditorHandles = guidata(iconEditor);
x = ...
y = ...
% update color of the selected block
color = iconEditorHandles.getColor(iconEditor);
cdata(y, x,:) = color;

9-32

Making Multiple GUIs Work Together

5. When mouse pointer is in the edit area, display the current
tool’s cursor
Icon Editor must set the cursor with every mouse motion. If the mouse is not
in the editing area, the pointer is the default arrow. Otherwise, it displays the
currently selected tool’s pointer icon. Identify the selected tool through the
Tool Palette’s handles:

% in Icon Editor
function iconEditor_WindowButtonMotionFcn(hObject, ...

eventdata, handles)
.
.
.
rows = size(handles.mIconCData,1);
cols = size(handles.mIconCData,2);
pt = get(handles.icon,'currentpoint');
overicon = (pt(1,1)>=0 && pt(1,1)<=rows) && ...

(pt(1,2)>=0 && pt(1,2)<=cols);
.
.
.
if ~overicon

set(hObject,'pointer','arrow');
else

toolPalette = handles.toolPalette;
toolPaletteHandles = guidata(toolPalette);
tool = toolPaletteHandles.mCurrentTool;
cdata = round(mean(get(tool, 'cdata'),3))+1;
if ~isempty(cdata)

set(hObject,'pointer','custom','PointerShapeCData', ...
cdata(1:16, 1:16),'PointerShapeHotSpot',[16 1]);

end
end
.
.
.

9-33

9 Managing and Sharing Application Data in GUIDE

6. Close all windows only when the Icon Editor completes
When launching Icon Editor, Color Palette and Tool Palette were also invoked
and remembered within the handles structure of Icon Editor. However, Icon
Editor also invokes uiwait to defer output until the GUI is finished, which
complicates the shutdown sequence. Furthermore, neither the Color Palette
nor Tool Palette is permitted to close independently of Icon Editor shutdown.
The only ways out are the OK button, the Cancel button, or closing the Icon
Editor’s window directly. Closing the Color Palette and Tool Palette windows
(by clicking their X box) has to be blocked.

Finally, upon closing, set the output of Icon Editor to be the cdata of the icon.
The opening function for Icon Editor, with uiwait, contains this code:

% in Icon Editor
function guide_iconeditor_OpeningFcn(hObject, eventdata, ...

handles, varargin)

.

.

.
handles.colorPalette = guide_colorpalette();
handles.toolPalette = guide_toolpalette('iconEditor', hObject);
.
.
.
% Update handles structure
guidata(hObject, handles);
uiwait(hObject);

Because Icon Editor calls uiwait to begin with, uiresume must be called
on each exit path:

% in Icon Editor
function buttonOK_Callback(hObject, eventdata, handles)
uiresume(handles.figure);

function buttonCancel_Callback(hObject, eventdata, handles)
% Make sure the return data will be empty if we cancelled
handles.mIconCData =[];
guidata(handles.figure, handles);

9-34

Making Multiple GUIs Work Together

uiresume(handles.figure);

function Icon Editor_CloseRequestFcn(hObject, eventdata, handles)
uiresume(hObject);

To ensure that the Color Palette is not closed any other way, override its
closerequestfcn to do nothing:

% in colorPalette
function figure_CloseRequestFcn(hObject, eventdata, handles)
% Don't close this figure. It must be deleted from Icon Editor

Do the same for Tool Palette:

% in toolPalette
function figure_CloseRequestFcn(hObject, eventdata, handles)
% Don't close this figure. It must be deleted from Icon Editor

Finally, in the output function, destroy all three GUIs:

% in Icon Editor
function varargout = guide_iconeditor_OutputFcn(hObject, ...

eventdata, handles)
% Return the cdata of the icon. If cancelled, this will be empty
varargout{1} = handles.mIconCData;
delete(handles.toolPalette);
delete(handles.colorPalette);
delete(hObject);

9-35

9 Managing and Sharing Application Data in GUIDE

9-36

10

Examples of GUIDE GUIs

GUI with Multiple Axes (p. 10-2) Analyze data and generate frequency
and time domain plots in the GUI
figure.

List Box Directory Reader (p. 10-9) List the contents of a directory,
navigate to other directories, and
define what command to execute
when users double-click on a given
type of file.

Accessing Workspace Variables from
a List Box (p. 10-16)

List variables in the base MATLAB
workspace from a GUI and plot them.
This example illustrates selecting
multiple items and executing
commands in a different workspace.

A GUI to Set Simulink Model
Parameters (p. 10-21)

Set parameters in a Simulink®

model, save and plot the data, and
implement a help button.

An Address Book Reader (p. 10-35) Read data from MAT-files, edit and
save the data, and manage GUI data
using the handles structure.

Using a Modal Dialog to Confirm an
Operation (p. 10-52)

Illustrates use of a modal dialog GUI
to confirm that the user wants to
proceed with an operation.

10 Examples of GUIDE GUIs

GUI with Multiple Axes

In this section...

“Multiple Axes Example Outcome” on page 10-2

“Techniques Used in the Example” on page 10-3

“View Completed Layout and Its GUI M-File” on page 10-3

“Design of the GUI” on page 10-3

“Plot Push Button Callback” on page 10-6

Multiple Axes Example Outcome
This example creates a GUI that contains two axes for plotting data. For
simplicity, this example obtains data by evaluating an expression using
parameters entered by the user.

10-2

GUI with Multiple Axes

Techniques Used in the Example
GUI-building techniques illustrated in this example include

• Controlling which axes is the target for plotting commands.

• Using edit text controls to read numeric input and MATLAB expressions.

View Completed Layout and Its GUI M-File
If you are reading this in the MATLAB Help browser, you can click the
following links to display the GUIDE Layout Editor and the MATLAB Editor
with a completed version of this example. This enables you to see the values
of all component properties and to understand how the components are
assembled to create the GUI. You can also see a complete listing of the code
that is discussed in the following sections.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this online or
in PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the links.

• Click here to display this GUI in the Layout Editor.

• Click here to display the GUI M-file in the MATLAB Editor.

Design of the GUI
This GUI requires three input values:

• Frequency one (f1)

• Frequency two (f2)

• A time vector (t)

When the user clicks the Plot button, the GUI puts these values into a
MATLAB expression that is the sum of two sine function:

x = sin(2*pi*f1*t) + sin(2*pi*f2*t)

10-3

10 Examples of GUIDE GUIs

The GUI then calculates the FFT of x and creates two plots — one frequency
domain and one time domain.

Specifying Default Values for the Inputs
The GUI uses default values for the three inputs. This enables users to click
on the Plot button and see a result as soon as the GUI is run. It also helps to
indicate what values the user might enter.

To create the default values, set the String property of the edit text. The
following figure shows the value set for the time vector.

Identifying the Axes
Since there are two axes in this GUI, you must be able to specify which one
you want to target when you issue the plotting commands. To do this, use the
handles structure, which contains the handles of all components in the GUI.

10-4

GUI with Multiple Axes

The field name in the handles structure that contains the handle of any
given component is derived from the component’s Tag property. To make code
more readable (and to make it easier to remember) this example sets the
Tag property to descriptive names.

For example, the Tag of the axes used to display the FFT is set to
frequency_axes. Therefore, within a callback, you access its handle with

handles.frequency_axes

Likewise, the Tag of the time axes is set to time_axes.

See “handles Structure” on page 8-15 for more information on the handles
structure. See “Plot Push Button Callback” on page 10-6 for the details of how
to use the handle to specify the target axes.

GUI Option Settings
There are two GUI option settings that are particularly important for this
GUI:

• Resize behavior: Proportional

• Command-line accessibility: Callback

10-5

10 Examples of GUIDE GUIs

Proportional Resize Behavior. Selecting Proportional as the resize
behavior enables users to change the GUI to better view the plots. The
components change size in proportion to the GUI figure size. This generally
produces good results except when extremes of dimensions are used.

Callback Accessibility of Object Handles. When GUIs include axes,
handles should be visible from within callbacks. This enables you to use
plotting commands like you would on the command line. Note that Callback
is the default setting for command-line accessibility.

See “GUI Options” on page 5-9 for more information.

Plot Push Button Callback
This GUI uses only the Plot button callback; the edit text callbacks are not
needed and have been deleted from the GUI M-file. When a user clicks the
Plot button, the callback performs three basic tasks — it gets user input from
the edit text components, calculates data, and creates the two plots.

Getting User Input
The three edit text boxes provide a way for the user to enter values for the
two frequencies and the time vector. The first task for the callback is to read
these values. This involves:

• Reading the current values in the three edit text boxes using the handles
structure to access the edit text handles.

• Converting the two frequency values (f1 and f2) from string to doubles
using str2double.

• Evaluating the time string using eval to produce a vector t, which the
callback used to evaluate the mathematical expression.

The following code shows how the callback obtains the input.

% Get user input from GUI
f1 = str2double(get(handles.f1_input,'String'));
f2 = str2double(get(handles.f2_input,'String'));
t = eval(get(handles.t_input,'String'));

10-6

GUI with Multiple Axes

Calculating Data
Once the input data has been converted to numeric form and assigned to local
variables, the next step is to calculate the data needed for the plots. See the
fft function for an explanation of how this is done.

Targeting Specific Axes
The final task for the callback is to actually generate the plots. This involves

• Making the appropriate axes current using the axes command and the
handle of the axes. For example,

axes(handles.frequency_axes)

• Issuing the plot command.

• Setting any properties that are automatically reset by the plot command.

The last step is necessary because many plotting commands (including plot)
clear the axes before creating the graph. This means you cannot use the
Property Inspector to set the XMinorTick and grid properties that are used in
this example, since they are reset when the callback executes plot.

When looking at the following code listing, note how the handles structure is
used to access the handle of the axes when needed.

Plot Button Code Listing

function plot_button_Callback(hObject, eventdata, handles)

% hObject handle to plot_button (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get user input from GUI

f1 = str2double(get(handles.f1_input,'String'));

f2 = str2double(get(handles.f2_input,'String'));

t = eval(get(handles.t_input,'String'));

% Calculate data

x = sin(2*pi*f1*t) + sin(2*pi*f2*t);

10-7

10 Examples of GUIDE GUIs

y = fft(x,512);

m = y.*conj(y)/512;

f = 1000*(0:256)/512;

% Create frequency plot

axes(handles.frequency_axes) % Select the proper axes

plot(f,m(1:257))

set(handles.frequency_axes,'XMinorTick','on')

grid on

% Create time plot

axes(handles.time_axes) % Select the proper axes

plot(t,x)

set(handles.time_axes,'XMinorTick','on')

grid on

10-8

List Box Directory Reader

List Box Directory Reader

In this section...

“List Box Example Outcome” on page 10-9

“View Layout and GUI M-File” on page 10-10

“Implementing the GUI” on page 10-10

“Specifying the Directory to List” on page 10-11

“Loading the List Box” on page 10-12

List Box Example Outcome
This example uses a list box to display the files in a directory. When the user
double clicks on a list item, one of the following happens:

• If the item is a file, the GUI opens the file appropriately for the file type.

• If the item is a directory, the GUI reads the contents of that directory into
the list box.

• If the item is a single dot (.), the GUI updates the display of the current
directory.

• If the item is two dots (..), the GUI changes to the directory up one level
and populates the list box with the contents of that directory.

The following figure illustrates the GUI.

10-9

10 Examples of GUIDE GUIs

View Layout and GUI M-File
If you are reading this in the MATLAB Help browser, you can click the
following links to display the GUIDE Layout Editor and the MATLAB Editor
with a completed version of this example. This enables you to see the values
of all component properties and to understand how the components are
assembled to create the GUI. You can also see a complete listing of the code
that is discussed in the following sections.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this online or
in PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the links.

• Click here to display this GUI in the Layout Editor.

• Click here to display the GUI M-file in the editor.

Implementing the GUI
The following sections describe the implementation:

• “Specifying the Directory to List” on page 10-11 — shows how to pass a
directory path as input argument when the GUI is run.

10-10

List Box Directory Reader

• “Loading the List Box” on page 10-12 — describes the subfunction that loads
the contents of the directory into the list box. This subfunction also saves
information about the contents of a directory in the handles structure.

• “The List Box Callback” on page 10-13 — explains how the list box is
programmed to respond to user double clicks on items in the list box.

Specifying the Directory to List
You can specify the directory to list when the GUI is first opened by passing
the string 'create' and a string containing the full path to the directory as
arguments. The syntax for doing this is list_box('create','dir_path'). If
you do not specify a directory (i.e., if you call the GUI M-file with no input
arguments), the GUI then uses the MATLAB current directory.

The default behavior of the GUI M-file that GUIDE generates is to run the
GUI when there are no input arguments or to call a subfunction when the first
input argument is a character string. This example changes this behavior
so that you can call the M-file with

• No input arguments — run the GUI using the MATLAB current directory.

• First input argument is 'dir' and second input argument is a string that
specifies a valid path to a directory — run the GUI, displaying the specified
directory.

• First input argument is not a directory, but is a character string and there
is more than one argument — execute the subfunction identified by the
argument (execute callback).

The following code listing show the setup section of the GUI M-file, which
does one the following:

• Sets the list box directory to the current directory, if no directory is specified.

• Changes the current directory, if a directory is specified.

function lbox2_OpeningFcn(hObject, eventdata, handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to untitled (see VARARGIN)

10-11

10 Examples of GUIDE GUIs

% Choose default command line output for lbox2

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

if nargin == 3,

initial_dir = pwd;

elseif nargin > 4

if strcmpi(varargin{1},'dir')

if exist(varargin{2},'dir')

initial_dir = varargin{2};

else

errordlg({'Input argument must be a valid',...

'directory'},'Input Argument Error!')

return

end

else

errordlg('Unrecognized input argument',...

'Input Argument Error!');

return;

end

end

% Populate the listbox

load_listbox(initial_dir,handles)

Loading the List Box
This example creates a subfunction to load items into the list box. This
subfunction accepts the path to a directory and the handles structure as
input arguments. It performs these steps:

• Change to the specified directory so the GUI can navigate up and down
the tree as required.

• Use the dir command to get a list of files in the specified directory and to
determine which name is a directory and which is a file. dir returns a
structure (dir_struct) with two fields, name and isdir, which contain
this information.

10-12

List Box Directory Reader

• Sort the file and directory names (sortrows) and save the sorted names
and other information in the handles structure so this information can be
passed to other functions.

The name structure field is passed to sortrows as a cell array, which is
transposed to get one file name per row. The isdir field and the sorted
index values, sorted_index, are saved as vectors in the handles structure.

• Call guidata to save the handles structure.

• Set the list box String property to display the file and directory names and
set the Value property to 1. This is necessary to ensure Value never exceeds
the number of items in String, since MATLAB updates the Value property
only when a selection occurs and not when the contents of String changes.

• Displays the current directory in the text box by setting its String property
to the output of the pwd command.

The load_listbox function is called by the opening function of the GUI M-file
as well as by the list box callback.

function load_listbox(dir_path, handles)
cd (dir_path)
dir_struct = dir(dir_path);
[sorted_names,sorted_index] = sortrows({dir_struct.name}');
handles.file_names = sorted_names;
handles.is_dir = [dir_struct.isdir];
handles.sorted_index = sorted_index;
guidata(handles.figure1,handles)
set(handles.listbox1,'String',handles.file_names,...
'Value',1)

set(handles.text1,'String',pwd)

The List Box Callback
The list box callback handles only one case: a double-click on an item. Double
clicking is the standard way to open a file from a list box. If the selected item
is a file, it is passed to the open command; if it is a directory, the GUI changes
to that directory and lists its contents.

10-13

10 Examples of GUIDE GUIs

Defining How to Open File Types
The callback makes use of the fact that the open command can handle
a number of different file types. However, the callback treats FIG-files
differently. Instead of opening the FIG-file, it passes it to the guide command
for editing.

Determining Which Item the User Selected
Since a single click on an item also invokes the list box callback, it is necessary
to query the figure SelectionType property to determine when the user has
performed a double click. A double-click on an item sets the SelectionType
property to open.

All the items in the list box are referenced by an index from 1 to n, where 1
refers to the first item and n is the index of the nth item. MATLAB saves this
index in the list box Value property.

The callback uses this index to get the name of the selected item from the list
of items contained in the String property.

Determining if the Selected Item is a File or Directory
The load_listbox function uses the dir command to obtain a list of values
that indicate whether an item is a file or directory. These values (1 for
directory, 0 for file) are saved in the handles structure. The list box callback
queries these values to determine if current selection is a file or directory
and takes the following action:

• If the selection is a directory — change to the directory (cd) and call
load_listbox again to populate the list box with the contents of the new
directory.

• If the selection is a file — get the file extension (fileparts) to determine
if it is a FIG-file, which is opened with guide. All other file types are
passed to open.

The open statement is called within a try/catch block to capture errors in an
error dialog (errordlg), instead of returning to the command line.

get(handles.figure1,'SelectionType');
% If double click

10-14

List Box Directory Reader

if strcmp(get(handles.figure1,'SelectionType'),'open')
index_selected = get(handles.listbox1,'Value');
file_list = get(handles.listbox1,'String');
% Item selected in list box
filename = file_list{index_selected};
% If directory
if handles.is_dir(handles.sorted_index(index_selected))

cd (filename)
% Load list box with new directory.
load_listbox(pwd,handles)

else
[path,name,ext,ver] = fileparts(filename);
switch ext

case '.fig'
% Open FIG-file with guide command.
guide (filename)

otherwise
try

% Use open for other file types.
open(filename)

catch
errordlg(lasterr,'File Type Error','modal')

end
end

end
end

Opening Unknown File Types
You can extend the file types that the open command recognizes to include
any file having a three-character extension. You do this by creating an M-file
with the name openxyz, where xyz is the extension. Note that the list box
callback does not take this approach for FIG-files since openfig.m is required
by the GUI M-file. See open for more information.

10-15

10 Examples of GUIDE GUIs

Accessing Workspace Variables from a List Box

In this section...

“Workspace Variable Example Outcome” on page 10-16

“Techniques Used in This Example” on page 10-16

“View Completed Layout and Its GUI M-File” on page 10-17

“Reading Workspace Variables” on page 10-18

“Reading the Selections from the List Box” on page 10-18

Workspace Variable Example Outcome
This GUI uses a list box to display workspace variables, which the user can
then plot.

Techniques Used in This Example

• Populate the list box with the variable names that exist in the base
workspace.

• Display the list box with no items initially selected.

• Enable multiple item selection in the list box.

• Update the list items when the user press a button.

• Evaluate the plotting commands in the base workspace.
The following figure illustrates the layout.

10-16

Accessing Workspace Variables from a List Box

Note that the list box callback is not used in this program because the plotting
actions are initiated by push buttons. In this situation you must do one
of the following:

• Leave the empty list box callback in the GUI M-file.

• Delete the string assigned to the list box Callback property.

View Completed Layout and Its GUI M-File
If you are reading this in the MATLAB Help browser, you can click the
following links to display the GUIDE Layout Editor and the MATLAB Editor
with a completed version of this example. This enables you to see the values
of all component properties and to understand how the components are
assembled to create the GUI. You can also see a complete listing of the code
that is discussed in the following sections.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this online or
in PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the links.

10-17

10 Examples of GUIDE GUIs

• Click here to display this GUI in the Layout Editor.

• Click here to display the GUI M-file in the editor.

Reading Workspace Variables
When the GUI initializes, it needs to query the workspace variables and set
the list box String property to display these variable names. Adding the
following subfunction to the GUI M-file accomplishes this using evalin to
execute the who command in the base workspace. The who command returns a
cell array of strings, which are used to populate the list box.

function update_listbox(handles)
vars = evalin('base','who');
set(handles.listbox1,'String',vars)

The function’s input argument is the handles structure generated by the
GUI M-file. This structure contains the handle of the list box, as well as the
handles all other components in the GUI.

The callback for the Update Listbox push button also calls update_listbox.

Reading the Selections from the List Box
This GUI requires the user to select two variables from the workspace and
then choose one of three plot commands to create the graph: plot, semilogx,
or semilogy.

Enabling Multiple Selection
To enable multiple selection in a list box, you must set the Min and Max
properties so that Max - Min > 1. This requires you to change the default
Min and Max values of 0 and 1 to meet these conditions. Use the Property
Inspector to set these properties on the list box.

How Users Select Multiple Items
List box multiple selection follows the standard for most systems:

• Ctrl+click left mouse button — noncontiguous multi-item selection

• Shift+click left mouse button — contiguous multi-item selection

10-18

Accessing Workspace Variables from a List Box

Users must use one of these techniques to select the two variables required
to create the plot.

Returning Variable Names for the Plotting Functions
The get_var_names subroutine returns the two variable names that are
selected when the user clicks on one of the three plotting buttons. The function

• Gets the list of all items in the list box from the String property.

• Gets the indices of the selected items from the Value property.

• Returns two string variables, if there are two items selected. Otherwise
get_var_names displays an error dialog explaining that the user must
select two variables.

Here is the code for get_var_names:

function [var1,var2] = get_var_names(handles)
list_entries = get(handles.listbox1,'String');
index_selected = get(handles.listbox1,'Value');
if length(index_selected) ~= 2
errordlg('You must select two variables',...

'Incorrect Selection','modal')
else
var1 = list_entries{index_selected(1)};
var2 = list_entries{index_selected(2)};

end

Callbacks for the Plotting Buttons
The callbacks for the plotting buttons call get_var_names to get the names of
the variables to plot and then call evalin to execute the plot commands in
the base workspace.

For example, here is the callback for the plot function:

function plot_button_Callback(hObject, eventdata, handles)
[x,y] = get_var_names(handles);
evalin('base',['plot(' x ',' y ')'])

10-19

10 Examples of GUIDE GUIs

The command to evaluate is created by concatenating the strings and
variables that result in the command:

plot(x,y)

10-20

A GUI to Set Simulink Model Parameters

A GUI to Set Simulink Model Parameters

In this section...

“Set Simulink Model Parameters Example Outcome” on page 10-21

“Techniques Used in This Example” on page 10-22

“View Completed Layout and Its GUI M-File” on page 10-22

“How to Use the GUI (Text of GUI Help)” on page 10-23

“Running the GUI” on page 10-24

“Programming the Slider and Edit Text Components” on page 10-25

“Running the Simulation from the GUI” on page 10-28

“Removing Results from the List Box” on page 10-29

“Plotting the Results Data” on page 10-30

“The GUI Help Button” on page 10-32

“Closing the GUI” on page 10-33

“The List Box Callback and Create Function” on page 10-33

Set Simulink Model Parameters Example Outcome
This example illustrates how to create a GUI that sets the parameters of a
Simulink® model. In addition, the GUI can run the simulation and plot the
results. The following picture shows the GUI after running three simulations
with different values for controller gains.

10-21

10 Examples of GUIDE GUIs

Techniques Used in This Example
This example illustrates a number of GUI building techniques:

• Opening and setting parameters on a Simulink model from a GUI.

• Implementing sliders that operate in conjunction with text boxes, which
display the current value as well as accepting user input.

• Enabling and disabling controls, depending on the state of the GUI.

• Managing a variety of shared data using the handles structure.

• Directing graphics output to figures with hidden handles.

• Adding a help button that displays .html files in the MATLAB Help
browser.

View Completed Layout and Its GUI M-File
If you are reading this in the MATLAB Help browser, you can click the
following links to display the GUIDE Layout Editor and the MATLAB Editor
with a completed version of this example. This enables you to see the values
of all component properties and to understand how the components are
assembled to create the GUI. You can also see a complete listing of the code
that is discussed in the following sections.

10-22

A GUI to Set Simulink Model Parameters

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this online or
in PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the links.

• Click here to display this GUI in the Layout Editor.

• Click here to display the GUI M-file in the editor.

How to Use the GUI (Text of GUI Help)
You can use the F14 Controller Gain Editor to analyze how changing the
gains used in the Proportional-Integral Controller affect the aircraft’s angle of
attack and the amount of G force the pilot feels.

Note that the Simulink diagram f14.mdl must be open to run this GUI. If
you close the F14 Simulink model, the GUI reopens it whenever it requires
the model to execute.

Changing the Controller Gains
You can change gains in two blocks:

• The Proportional gain (Kf) in the Gain block

• The Integral gain (Ki) in the Transfer Function block

You can change either of the gains in one of the two ways:

• Move the slider associated with that gain.

• Type a new value into the Current value edit field associated with that
gain.

The block’s values are updated as soon as you enter the new value in the GUI.

10-23

10 Examples of GUIDE GUIs

Running the Simulation
Once you have set the gain values, you can run the simulation by clicking
the Simulate and store results button. The simulation time and output
vectors are stored in the Results list.

Plotting the Results
You can generate a plot of one or more simulation results by selecting the
row of results (Run1, Run2, etc.) in the Results list that you want to plot
and clicking the Plot button. If you select multiple rows, the graph contains
a plot of each result.

The graph is displayed in a figure, which is cleared each time you click the
Plot button. The figure’s handle is hidden so that only the GUI can display
graphs in this window.

Removing Results
To remove a result from the Results list, select the row or rows you want to
remove and click the Remove button.

Running the GUI
The GUI is nonblocking and nonmodal since it is designed to be used as an
analysis tool.

GUI Options Settings
This GUI uses the following GUI option settings:

• Resize behavior: Non-resizable

• Command-line accessibility: Off

• M-file options selected:

- Generate callback function prototypes

- GUI allows only one instance to run

10-24

A GUI to Set Simulink Model Parameters

Opening the Simulink Block Diagrams
This example is designed to work with the F14 Simulink model. Since the
GUI sets parameters and runs the simulation, the F14 model must be open
when the GUI is displayed. When the GUI M-file runs the GUI, it executes
the model_open subfunction. The purpose of the subfunction is to

• Determine if the model is open (find_system).

• Open the block diagram for the model and the subsystem where the
parameters are being set, if not open already (open_system).

• Change the size of the controller Gain block so it can display the gain value
(set_param).

• Bring the GUI forward so it is displayed on top of the Simulink diagrams
(figure).

• Set the block parameters to match the current settings in the GUI.

Here is the code for the model_open subfunction.

function model_open(handles)

if isempty(find_system('Name','f14')),

open_system('f14'); open_system('f14/Controller')

set_param('f14/Controller/Gain','Position',[275 14 340 56])

figure(handles.F14ControllerEditor)

set_param('f14/Controller Gain','Gain',...

get(handles.KfCurrentValue,'String'))

set_param(...

'f14/Controller/Proportional plus integral compensator',...

'Numerator',...

get(handles.KiCurrentValue,'String'))

end

Programming the Slider and Edit Text Components
This GUI employs a useful combination of components in its design. Each
slider is coupled to an edit text component so that:

• The edit text displays the current value of the slider.

• The user can enter a value into the edit text box and cause the slider to
update to that value.

10-25

10 Examples of GUIDE GUIs

• Both components update the appropriate model parameters when activated
by the user.

Slider Callback
The GUI uses two sliders to specify block gains since these components enable
the selection of continuous values within a specified range. When a user
changes the slider value, the callback executes the following steps:

• Calls model_open to ensure that the Simulink model is open so that
simulation parameters can be set.

• Gets the new slider value.

• Sets the value of the Current value edit text component to match the
slider.

• Sets the appropriate block parameter to the new value (set_param).

Here is the callback for the Proportional (Kf) slider.

function KfValueSlider_Callback(hObject, eventdata, handles)
% Ensure model is open.
model_open(handles)
% Get the new value for the Kf Gain from the slider.
NewVal = get(hObject, 'Value');
% Set the value of the KfCurrentValue to the new value
% set by slider.
set(handles.KfCurrentValue,'String',NewVal)
% Set the Gain parameter of the Kf Gain Block to the new value.
set_param('f14/Controller/Gain','Gain',num2str(NewVal))

Note that, while a slider returns a number and the edit text requires a string,
uicontrols automatically convert the values to the correct type.

The callback for the Integral (Ki) slider follows a similar approach.

Current Value Edit Text Callback
The edit text box enables users to type in a value for the respective parameter.
When the user clicks on another component in the GUI after typing into the
text box, the edit text callback executes the following steps:

10-26

A GUI to Set Simulink Model Parameters

• Calls model_open to ensure that the Simulink model is open so that it can
set simulation parameters.

• Converts the string returned by the edit box String property to a double
(str2double).

• Checks whether the value entered by the user is within the range of the
slider:

If the value is out of range, the edit text String property is set to the value
of the slider (rejecting the number typed in by the user).

If the value is in range, the slider Value property is updated to the new
value.

• Sets the appropriate block parameter to the new value (set_param).

Here is the callback for the Kf Current value text box.

function KfCurrentValue_Callback(hObject, eventdata, handles)
% Ensure model is open.
model_open(handles)
% Get the new value for the Kf Gain.
NewStrVal = get(hObject, 'String');
NewVal = str2double(NewStrVal);
% Check that the entered value falls within the allowable range.
if isempty(NewVal) || (NewVal< -5) || (NewVal>0),

% Revert to last value, as indicated by KfValueSlider.
OldVal = get(handles.KfValueSlider,'Value');
set(hObject, 'String',OldVal)

else % Use new Kf value
% Set the value of the KfValueSlider to the new value.
set(handles.KfValueSlider,'Value',NewVal)
% Set the Gain parameter of the Kf Gain Block
% to the new value.
set_param('f14/Controller/Gain','Gain',NewStrVal)

end

The callback for the Ki Current value follows a similar approach.

10-27

10 Examples of GUIDE GUIs

Running the Simulation from the GUI
The GUI Simulate and store results button callback runs the model
simulation and stores the results in the handles structure. Storing data
in the handles structure simplifies the process of passing data to other
subfunction since this structure can be passed as an argument.

When a user clicks on the Simulate and store results button, the callback
executes the following steps:

• Calls sim, which runs the simulation and returns the data that is used
for plotting.

• Creates a structure to save the results of the simulation, the current
values of the simulation parameters set by the GUI, and the run name
and number.

• Stores the structure in the handles structure.

• Updates the list box String to list the most recent run.

Here is the Simulate and store results button callback.

function SimulateButton_Callback(hObject, eventdata, handles)
[timeVector,stateVector,outputVector] = sim('f14');
% Retrieve old results data structure
if isfield(handles,'ResultsData') &
~isempty(handles.ResultsData)
ResultsData = handles.ResultsData;
% Determine the maximum run number currently used.
maxNum = ResultsData(length(ResultsData)).RunNumber;
ResultNum = maxNum+1;

else % Set up the results data structure
ResultsData = struct('RunName',[],'RunNumber',[],...

'KiValue',[],'KfValue',[],'timeVector',[],...
'outputVector',[]);

ResultNum = 1;
end
if isequal(ResultNum,1),
% Enable the Plot and Remove buttons
set([handles.RemoveButton,handles.PlotButton],'Enable','on')

end

10-28

A GUI to Set Simulink Model Parameters

% Get Ki and Kf values to store with the data and put in the
results list.
Ki = get(handles.KiValueSlider,'Value');
Kf = get(handles.KfValueSlider,'Value');
ResultsData(ResultNum).RunName = ['Run',num2str(ResultNum)];
ResultsData(ResultNum).RunNumber = ResultNum;
ResultsData(ResultNum).KiValue = Ki;
ResultsData(ResultNum).KfValue = Kf;
ResultsData(ResultNum).timeVector = timeVector;
ResultsData(ResultNum).outputVector = outputVector;
% Build the new results list string for the listbox
ResultsStr = get(handles.ResultsList,'String');
if isequal(ResultNum,1)
ResultsStr = {['Run1',num2str(Kf),' ',num2str(Ki)]};

else
ResultsStr = [ResultsStr;...
{['Run',num2str(ResultNum),' ',num2str(Kf),' ', ...
num2str(Ki)]}];

end
set(handles.ResultsList,'String',ResultsStr);
% Store the new ResultsData
handles.ResultsData = ResultsData;
guidata(hObject, handles)

Removing Results from the List Box
The GUI Remove button callback deletes any selected item from the
Results list list box. It also deletes the corresponding run data from the
handles structure. When a user clicks on the Remove button, the callback
executes the following steps:

• Determines which list box items are selected when a user clicks on the
Remove button and removes these items from the list box String property
by setting each item to the empty matrix [].

• Removes the deleted data from the handles structure.

• Displays the string <empty> and disables the Remove and Plot buttons
(using the Enable property), if all the items in the list box are removed.

• Save the changes to the handles structure (guidata).

10-29

10 Examples of GUIDE GUIs

Here is the Remove button callback.

function RemoveButton_Callback(hObject, eventdata, handles)

currentVal = get(handles.ResultsList,'Value');

resultsStr = get(handles.ResultsList,'String');

numResults = size(resultsStr,1);

% Remove the data and list entry for the selected value

resultsStr(currentVal) =[];

handles.ResultsData(currentVal)=[];

% If there are no other entries, disable the Remove and Plot

button

% and change the list string to <empty>

if isequal(numResults,length(currentVal)),

resultsStr = {'<empty>'};

currentVal = 1;

set([handles.RemoveButton,handles.PlotButton],'Enable','off')

end

% Ensure that list box Value is valid, then reset Value and String

currentVal = min(currentVal,size(resultsStr,1));

set(handles.ResultsList,'Value',currentVal,'String',resultsStr)

% Store the new ResultsData

guidata(hObject, handles)

Plotting the Results Data
The GUI Plot button callback creates a plot of the run data and adds a
legend. The data to plot is passed to the callback in the handles structure,
which also contains the gain settings used when the simulation ran. When a
user clicks on the Plot button, the callback executes the following steps:

• Collects the data for each run selected in the Results list, including two
variables (time vector and output vector) and a color for each result run
to plot.

• Generates a string for the legend from the stored data.

• Creates the figure and axes for plotting and saves the handles for use by
the Close button callback.

• Plots the data, adds a legend, and makes the figure visible.

10-30

A GUI to Set Simulink Model Parameters

Plotting Into the Hidden Figure
The figure that contains the plot is created invisible and then made visible
after adding the plot and legend. To prevent this figure from becoming the
target for plotting commands issued at the command line or by other GUIs, its
HandleVisibility and IntegerHandle properties are set to off. However,
this means the figure is also hidden from the plot and legend commands.

Use the following steps to plot into a hidden figure:

• Save the handle of the figure when you create it.

• Create an axes, set its Parent property to the figure handle, and save the
axes handle.

• Create the plot (which is one or more line objects), save these line handles,
and set their Parent properties to the handle of the axes.

• Make the figure visible.

Plot Button Callback Listing
Here is the Plot button callback.

function PlotButton_Callback(hObject, eventdata, handles)

currentVal = get(handles.ResultsList,'Value');

% Get data to plot and generate command string with color

% specified

legendStr = cell(length(currentVal),1);

plotColor = {'b','g','r','c','m','y','k'};

for ctVal = 1:length(currentVal);

PlotData{(ctVal*3)-2} =

handles.ResultsData(currentVal(ctVal)).timeVector;

PlotData{(ctVal*3)-1} =

handles.ResultsData(currentVal(ctVal)).outputVector;

numColor = ctVal - 7*(floor((ctVal-1)/7));

PlotData{ctVal*3} = plotColor{numColor};

legendStr{ctVal} = ...

[handles.ResultsData(currentVal(ctVal)).RunName,'; Kf=',...

num2str(handles.ResultsData(currentVal(ctVal)).KfValue),...

'; Ki=', ...

num2str(handles.ResultsData(currentVal(ctVal)).KiValue)];

end

10-31

10 Examples of GUIDE GUIs

% If necessary, create the plot figure and store in handles

% structure

if ~isfield(handles,'PlotFigure') ||...

~ishandle(handles.PlotFigure),

handles.PlotFigure = ...

figure('Name','F14 Simulation Output',...

'Visible','off','NumberTitle','off',...

'HandleVisibility','off','IntegerHandle','off');

handles.PlotAxes = axes('Parent',handles.PlotFigure);

guidata(hObject, handles)

end

% Plot data

pHandles = plot(PlotData{:},'Parent',handles.PlotAxes);

% Add a legend, and bring figure to the front

legend(pHandles(1:2:end),legendStr{:})

% Make the figure visible and bring it forward

figure(handles.PlotFigure)

The GUI Help Button
The GUI Help button callback displays an HTML file in the MATLAB Help
browser. It uses two commands:

• The which command returns the full path to the file when it is on the
MATLAB path

• The web command displays the file in the Help browser.

This is the Help button callback.

function HelpButton_Callback(hObject, eventdata, handles)
HelpPath = which('f14ex_help.html');
web(HelpPath);

You can also display the help document in a Web browser or load an external
URL. See the Web documentation for a description of these options.

10-32

A GUI to Set Simulink Model Parameters

Closing the GUI
The GUI Close button callback closes the plot figure, if one exists and then
closes the GUI. The handle of the plot figure and the GUI figure are available
from the handles structure. The callback executes two steps:

• Checks to see if there is a PlotFigure field in the handles structure and
if it contains a valid figure handle (the user could have closed the figure
manually).

• Closes the GUI figure

This is the Close button callback.

function CloseButton_Callback(hObject, eventdata, handles)
% Close the GUI and any plot window that is open
if isfield(handles,'PlotFigure') && ...

ishandle(handles.PlotFigure),
close(handles.PlotFigure);

end
close(handles.F14ControllerEditor);

The List Box Callback and Create Function
This GUI does not use the list box callback since the actions performed on list
box items are carried out by push buttons (Simulate and store results,
Remove, and Plot). However, GUIDE automatically inserts a callback stub
when you add the list box and automatically sets the Callback property to
execute this subfunction whenever the callback is triggered (which happens
when users select an item in the list box).

In this case, there is no need for the list box callback to execute, so you should
delete it from the GUI M-file. It is important to remember to also delete
the Callback property string so MATLAB does not attempt to execute the
callback. You can do this using the property inspector:

10-33

10 Examples of GUIDE GUIs

See the description of list box for more information on how to trigger the
list box callback.

Setting the Background to White
The list box create function enables you to determine the background color
of the list box. The following code shows the create function for the list box
that is tagged ResultsList.

function ResultsList_CreateFcn(hObject, eventdata, handles)
% Hint: listbox controls usually have a white background, change
% 'usewhitebg' to 0 to use default. See ISPC and COMPUTER.
usewhitebg = 1;
if usewhitebg

set(hObject,'BackgroundColor','white');
else
set(hObject,'BackgroundColor',...

get(0,'defaultUicontrolBackgroundColor'));
end

10-34

An Address Book Reader

An Address Book Reader

In this section...

“Address Book Reader Example Outcome” on page 10-35

“Techniques Used in This Example” on page 10-36

“Managing Shared Data” on page 10-36

“View Completed Layout and Its GUI M-File” on page 10-37

“Running the GUI” on page 10-37

“Loading an Address Book Into the Reader” on page 10-39

“The Contact Name Callback” on page 10-42

“The Contact Phone Number Callback” on page 10-44

“Paging Through the Address Book — Prev/Next” on page 10-45

“Saving Changes to the Address Book from the Menu” on page 10-46

“The Create New Menu” on page 10-48

“The Address Book Resize Function” on page 10-48

Address Book Reader Example Outcome
This example shows how to implement a GUI that displays names and phone
numbers, which it reads from a MAT-file.

10-35

10 Examples of GUIDE GUIs

Techniques Used in This Example
This example demonstrates the following GUI programming techniques:

• Uses open and save dialogs to provide a means for users to locate and
open the address book MAT-files and to save revised or new address book
MAT-files.

• Defines callbacks written for GUI menus.

• Uses the GUI’s handles structure to save and recall shared data.

• Uses a GUI figure resize function.

Managing Shared Data
One of the key techniques illustrated in this example is how to keep track
of information and make it available to the various subfunctions. This
information includes

• The name of the current MAT-file

• The names and phone numbers stored in the MAT-file

• An index pointer that indicates the current name and phone number, which
must be updated as the user pages through the address book

10-36

An Address Book Reader

• The figure position and size

• The handles of all GUI components

The descriptions of the subfunctions that follow illustrate how to save and
retrieve information from the handles structure. See “handles Structure” on
page 8-15 for background information on this structure.

View Completed Layout and Its GUI M-File
If you are reading this in the MATLAB Help browser, you can click the
following links to display the GUIDE Layout Editor and the MATLAB Editor
with a completed version of this example. This enables you to see the values
of all component properties and to understand how the components are
assembled to create the GUI. You can also see a complete listing of the code
that is discussed in the following sections.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this online or
in PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the links.

• Click here to display this GUI in the Layout Editor.

• Click here to display the GUI M-file in the MATLAB Editor.

Running the GUI
The GUI is nonblocking and nonmodal since it is designed to be displayed
while you perform other MATLAB tasks.

GUI Option Settings
This GUI uses the following GUI option settings:

• Resize behavior: User-specified

• Command-line accessibility: Off

• GUI M-file options selected:

10-37

10 Examples of GUIDE GUIs

- Generate callback function prototypes

- Application allows only one instance to run

Calling the GUI
You can call the GUI M-file with no arguments, in which case the GUI uses
the default address book MAT-file, or you can specify an alternate MAT-file
from which the GUI reads information. In this example, the user calls the
GUI with a pair of arguments, address_book('book', 'my_list.mat').
The first argument, 'book', is a key word that the M-file looks for in the
opening function. If the M-file finds the key word, it knows to use the second
argument as the MAT-file for the address book. Calling the GUI with this
syntax is analogous to calling it with a valid property-value pair, such as
('color', 'red'). However, since 'book' is not a valid figure property, in
this example the opening function in the M-file includes code to recognize
the pair ('book', 'my_list.mat').

Note that it is not necessary to use the key word 'book'. You could program
the M-file to accept just the MAT-file as an argument, using the syntax
address_book('my_list.mat'). The advantage of calling the GUI with
the pair ('book', 'my_list.mat') is that you can program the GUI to
accept other user arguments, as well as valid figure properties, using the
property-value pair syntax. The GUI can then identify which property the
user wants to specify from the property name.

The following code shows how to program the opening function to look for the
key word 'book', and if it finds the key word, to use the MAT-file specified by
the second argument as the list of contacts.

function address_book_OpeningFcn(hObject, eventdata,...
handles, varargin)

% Choose default command line output for address_book
handles.output = hObject;
% Update handles structure
guidata(hObject, handles);
% User added code follows
if nargin < 4

% Load the default address book
Check_And_Load([],handles);
% If the first element in varargin is 'book' and

10-38

An Address Book Reader

& the second element is a MATLAB file, then load that file
elseif (length(varargin) == 2 && ...

strcmpi(varargin{1},'book') && ...
(2 == exist(varargin{2},'file')))

Check_And_Load(varargin{2},handles);
else

errordlg('File Not Found','File Load Error')
set(handles.Contact_Name,'String','')
set(handles.Contact_Phone,'String','')

end

Loading an Address Book Into the Reader
There are two ways in which an address book (i.e., a MAT-file) is loaded into
the GUI:

• When running the GUI, you can specify a MAT-file as an argument. If
you do not specify an argument, the GUI loads the default address book
(addrbook.mat).

• The user can select Open under the File menu to browse for other
MAT-files.

Validating the MAT-file
To be a valid address book, the MAT-file must contain a structure called
Addresses that has two fields called Name and Phone. The Check_And_Load
subfunction validates and loads the data with the following steps:

• Loads (load) the specified file or the default if none is specified.

• Determines if the MAT-file is a valid address book.

• Displays the data if it is valid. If it is not valid, displays an error dialog
(errordlg).

• Returns 1 for valid MAT-files and 0 if invalid (used by the Open menu
callback)

• Saves the following items in the handles structure:

- The name of the MAT-file

- The Addresses structure

10-39

10 Examples of GUIDE GUIs

- An index pointer indicating which name and phone number are currently
displayed

Check_And_Load Code Listing
This is the Check_And_Load function.

function pass = Check_And_Load(file,handles)
% Initialize the variable "pass" to determine if this is
% a valid file.
pass = 0;
% If called without any file then set file to the default
% filename.
% Otherwise, if the file exists then load it.
if isempty(file)
file = 'addrbook.mat';
handles.LastFile = file;
guidata(handles.Address_Book,handles)

end
if exist(file) == 2
data = load(file);

end
% Validate the MAT-file
% The file is valid if the variable is called "Addresses"
% and it has fields called "Name" and "Phone"
flds = fieldnames(data);
if (length(flds) == 1) && (strcmp(flds{1},'Addresses'))
fields = fieldnames(data.Addresses);
if (length(fields) == 2) && ...

(strcmp(fields{1},'Name')) && ...
(strcmp(fields{2},'Phone'))

pass = 1;
end

end
% If the file is valid, display it
if pass
% Add Addresses to the handles structure
handles.Addresses = data.Addresses;
guidata(handles.Address_Book,handles)
% Display the first entry

10-40

An Address Book Reader

set(handles.Contact_Name,'String',data.Addresses(1).Name)
set(handles.Contact_Phone,'String',data.Addresses(1).Phone)
% Set the index pointer to 1 and save handles
handles.Index = 1;
guidata(handles.Address_Book,handles)

else
errordlg('Not a valid Address Book','Address Book Error')

end

The Open Menu Callback
The address book GUI contains a File menu that has an Open submenu
for loading address book MAT-files. When selected, Open displays a dialog
(uigetfile) that enables the user to browse for files. The dialog displays only
MAT-files, but users can change the filter to display all files.

The dialog returns both the filename and the path to the file, which is
then passed to fullfile to ensure the path is properly constructed for any
platform. Check_And_Load validates and load the new address book.

Open_Callback Code Listing

function Open_Callback(hObject, eventdata, handles)
[filename, pathname] = uigetfile(...
{'*.mat', 'All MAT-Files (*.mat)'; ...
'*.*','All Files (*.*)'}, ...

'Select Address Book');
% If "Cancel" is selected then return
if isequal([filename,pathname],[0,0])
return

% Otherwise construct the fullfilename and Check and load
% the file
else
File = fullfile(pathname,filename);
% if the MAT-file is not valid, do not save the name
if Check_And_Load(File,handles)
handles.LastFIle = File;
guidata(hObject, handles)

end
end

10-41

10 Examples of GUIDE GUIs

See the “Creating Menus” on page 6-70 section for information on creating
the menu.

The Contact Name Callback
The Contact Name text box displays the name of the address book entry. If
you type in a new name and press enter, the callback performs these steps:

• If the name exists in the current address book, the corresponding phone
number is displayed.

• If the name does not exist, a question dialog (questdlg) asks you if you
want to create a new entry or cancel and return to the name previously
displayed.

• If you create a new entry, you must save the MAT-file with the File > Save
menu.

Storing and Retrieving Data
This callback makes use of the handles structure to access the contents of the
address book and to maintain an index pointer (handles.Index) that enables
the callback to determine what name was displayed before it was changed
by the user. The index pointer indicates what name is currently displayed.
The address book and index pointer fields are added by the Check_And_Load
function when the GUI is run.

If the user adds a new entry, the callback adds the new name to the address
book and updates the index pointer to reflect the new value displayed. The
updated address book and index pointer are again saved (guidata) in the
handles structure.

Contact Name Callback

function Contact_Name_Callback(hObject, eventdata, handles)
% Get the strings in the Contact Name and Phone text box
Current_Name = get(handles.Contact_Name,'string');
Current_Phone = get(handles.Contact_Phone,'string');
% If empty then return
if isempty(Current_Name)
return

10-42

An Address Book Reader

end
% Get the current list of addresses from the handles structure
Addresses = handles.Addresses;
% Go through the list of contacts
% Determine if the current name matches an existing name
for i = 1:length(Addresses)
if strcmp(Addresses(i).Name,Current_Name)
set(handles.Contact_Name,'string',Addresses(i).Name)
set(handles.Contact_Phone,'string',Addresses(i).Phone)
handles.Index = i;
guidata(hObject, handles)
return

end
end
% If it's a new name, ask to create a new entry
Answer=questdlg('Do you want to create a new entry?', ...
'Create New Entry', ...
'Yes','Cancel','Yes');

switch Answer
case 'Yes'
Addresses(end+1).Name = Current_Name; % Grow array by 1
Addresses(end).Phone = Current_Phone;
index = length(Addresses);
handles.Addresses = Addresses;
handles.Index = index;
guidata(hObject, handles)
return

case 'Cancel'
% Revert back to the original number

set(handles.Contact_Name,'String',Addresses(handles.Index).Name
)

set(handles.Contact_Phone,'String',Addresses(handles.Index).Pho
ne)
return

end

10-43

10 Examples of GUIDE GUIs

The Contact Phone Number Callback
The Contact Phone # text box displays the phone number of the entry listed
in the Contact Name text box. If you type in a new number click one of the
push buttons, the callback opens a question dialog that asks you if you want
to change the existing number or cancel your change.

Like the Contact Name text box, this callback uses the index pointer
(handles.Index) to update the new number in the address book and to revert
to the previously displayed number if the user selects Cancel from the
question dialog. Both the current address book and the index pointer are
saved in the handles structure so that this data is available to other callbacks.

If you create a new entry, you must save the MAT-file with the File > Save
menu.

Code Listing

function Contact_Phone_Callback(hObject, eventdata, handles)
Current_Phone = get(handles.Contact_Phone,'string');
% If either one is empty then return
if isempty(Current_Phone)
return

end
% Get the current list of addresses from the handles structure
Addresses = handles.Addresses;
Answer=questdlg('Do you want to change the phone number?', ...
'Change Phone Number', ...
'Yes','Cancel','Yes');

switch Answer
case 'Yes'
% If no name match was found create a new contact
Addresses(handles.Index).Phone = Current_Phone;
handles.Addresses = Addresses;
guidata(hObject, handles)
return

case 'Cancel'
% Revert back to the original number
set(handles.Contact_Phone,...

'String',Addresses(handles.Index).Phone)

10-44

An Address Book Reader

return
end

Paging Through the Address Book — Prev/Next
The Prev and Next buttons page back and forth through the entries in the
address book. Both push buttons use the same callback, Prev_Next_Callback.
You must set the Callback property of both push buttons to call this
subfunction, as the following illustration of the Prev push button Callback
property setting shows.

Determining Which Button Is Clicked
The callback defines an additional argument, str, that indicates which
button, Prev or Next, was clicked. For the Prev button Callback property
(illustrated above), the Callback string includes 'Prev' as the last argument.
The Next button Callback string includes 'Next' as the last argument.
The value of str is used in case statements to implement each button’s
functionality (see the code listing below).

Paging Forward or Backward
Prev_Next_Callback gets the current index pointer and the addresses from
the handles structure and, depending on which button the user presses, the
index pointer is decremented or incremented and the corresponding address
and phone number are displayed. The final step stores the new value for
the index pointer in the handles structure and saves the updated structure
using guidata.

10-45

10 Examples of GUIDE GUIs

Code Listing

function Prev_Next_Callback(hObject, eventdata,handles,str)
% Get the index pointer and the addresses
index = handles.Index;
Addresses = handles.Addresses;
% Depending on whether Prev or Next was clicked,
% change the display
switch str
case 'Prev'
% Decrease the index by one
i = index - 1;
% If the index is less than one then set it equal to the index

% of the last element in the Addresses array
if i < 1
i = length(Addresses);

end
case 'Next'
% Increase the index by one
i = index + 1;
% If the index is greater than the size of the array then
% point to the first item in the Addresses array
if i > length(Addresses)
i = 1;

end
end
% Get the appropriate data for the index in selected
Current_Name = Addresses(i).Name;
Current_Phone = Addresses(i).Phone;
set(handles.Contact_Name,'string',Current_Name)
set(handles.Contact_Phone,'string',Current_Phone)
% Update the index pointer to reflect the new index
handles.Index = i;
guidata(hObject, handles)

Saving Changes to the Address Book from the Menu
When you make changes to an address book, you need to save the current
MAT-file, or save it as a new MAT-file. The File submenus Save and Save
As enable you to do this. These menus, created with the Menu Editor, use
the same callback, Save_Callback.

10-46

An Address Book Reader

The callback uses the menu Tag property to identify whether Save or Save
As is the callback object (i.e., the object whose handle is passed in as the
first argument to the callback function). You specify the menu’s Tag property
with the Menu Editor.

Saving the Addresses Structure
The handles structure contains the Addresses structure, which you must
save (handles.Addresses) as well as the name of the currently loaded
MAT-file (handles.LastFile). When the user makes changes to the name
or number, the Contact_Name_Callback or the Contact_Phone_Callback
updates handles.Addresses.

Saving the MAT-File
If the user selects Save, the save command is called to save the current
MAT-file with the new names and phone numbers.

If the user selects Save As, a dialog is displayed (uiputfile) that enables
the user to select the name of an existing MAT-file or specify a new file. The
dialog returns the selected filename and path. The final steps include

• Using fullfile to create a platform-independent pathname.

• Calling save to save the new data in the MAT-file.

• Updating the handles structure to contain the new MAT-file name.

• Calling guidata to save the handles structure.

Save_Callback Code Listing

function Save_Callback(hObject, eventdata, handles)
% Get the Tag of the menu selected
Tag = get(hObject, 'Tag');
% Get the address array
Addresses = handles.Addresses;
% Based on the item selected, take the appropriate action
switch Tag
case 'Save'
% Save to the default addrbook file
File = handles.LastFile;

10-47

10 Examples of GUIDE GUIs

save(File,'Addresses')
case 'Save_As'
% Allow the user to select the file name to save to
[filename, pathname] = uiputfile(...
{'*.mat';'*.*'}, ...
'Save as');

% If 'Cancel' was selected then return
if isequal([filename,pathname],[0,0])
return

else
% Construct the full path and save
File = fullfile(pathname,filename);
save(File,'Addresses')
handles.LastFile = File;
guidata(hObject, handles)

end
end

The Create New Menu
The Create New menu simply clears the Contact Name and
Contact Phone # text fields to facilitate adding a new name and number.
After making the new entries, the user must then save the address book with
the Save or Save As menus. This callback sets the text String properties
to empty strings:

function New_Callback(hObject, eventdata, handles)
set(handles.Contact_Name,'String','')
set(handles.Contact_Phone,'String','')

The Address Book Resize Function
The address book defines its own resize function. To use this resize
function, you must set the Application Options dialog Resize behavior to
User-specified, which in turn sets the figure’s ResizeFcn property to:

address_book('ResizeFcn',gcbo,[],guidata(gcbo))

Whenever the user resizes the figure, MATLAB calls the ResizeFcn
subfunction in the address book M-file (address_book.m)

10-48

An Address Book Reader

Behavior of the Resize Function
The resize function allows users to make the figure wider, to accommodate
long names and numbers, but does not allow the figure to be made narrower
than its original width. Also, users cannot change the height. These
restrictions do not limit the usefulness of the GUI and simplify the resize
function, which must maintain the proper proportions between the figure
size and the components in the GUI.

When the user resizes the figure and releases the mouse, the resize function
executes. At that point, the resized figure’s dimensions are saved. The
following sections describe how the resize function handles the various
possibilities.

Changing the Width
If the new width is greater than the original width, set the figure to the new
width.

The size of the Contact Name text box changes in proportion to the new
figure width. This is accomplished by:

• Changing the Units of the text box to normalized.

• Resetting the width of the text box to be 78.9% of the figure’s width.

• Returning the Units to characters.

If the new width is less than the original width, use the original width.

Changing the Height
If the user attempts to change the height, use the original height. However,
because the resize function is triggered when the user releases the mouse
button after changing the size, the resize function cannot always determine
the original position of the GUI on screen. Therefore, the resize function
applies a compensation to the vertical position (second element in the figure
Position vector) by adding the vertical position when the mouse is released
to the height when mouse is released and subtracting the original height.

10-49

10 Examples of GUIDE GUIs

When the figure is resized from the bottom, it stays in the same position.
When resized from the top, the figure moves to the location where the mouse
button is released.

Ensuring the Resized Figure Is On Screen
The resize function calls movegui to ensure that the resized figure is on
screen regardless of where the user releases the mouse.

When the GUI is first run, it is displayed at the size and location specified
by the figure Position property. You can set this property with the Property
Inspector when you create the GUI.

Code Listing

function ResizeFcn(hObject, eventdata, handles)
% Get the figure size and position
Figure_Size = get(hObject, 'Position');
% Set the figure's original size in character units
Original_Size = [0 0 94 19.230769230769234];
% If the resized figure is smaller than the
% original figure size then compensate.
if (Figure_Size(3)<Original_Size(3)) | ...

(Figure_Size(4) ~= Original_Size(4))
if Figure_Size(3) < Original_Size(3)

% If the width is too small then reset to origianl width.
set(hObject, 'Position',...

[Figure_Size(1), Figure_Size(2), ...
Original_Size(3), Original_Size(4)])

Figure_Size = get(hObject, 'Position');
end
if Figure_Size(4) ~= Original_Size(4)

% Do not allow the height to change.
set(hObject, 'Position',...

[Figure_Size(1),...
Figure_Size(2)+Figure_Size(4)-Original_Size(4),...
Figure_Size(3), Original_Size(4)])

end
end
% Adjust the size of the Contact Name text box.

10-50

An Address Book Reader

% Set the units of the Contact Name field to 'Normalized'.
set(handles.Contact_Name,'units','normalized')
% Get its Position.
C_N_pos = get(handles.Contact_Name,'Position');
% Reset it so that it's width remains normalized.
% relative to figure.
set(handles.Contact_Name,'Position',...
[C_N_pos(1) C_N_pos(2) 0.789 C_N_pos(4)])

% Return the units to 'Characters'.
set(handles.Contact_Name,'units','characters')
% Reposition GUI on screen.
movegui(hObject, 'onscreen')

10-51

10 Examples of GUIDE GUIs

Using a Modal Dialog to Confirm an Operation

In this section...

“Modal Dialog Example Outcome” on page 10-52

“View Completed Layouts and Their GUI M-Files” on page 10-52

“Setting Up the Close Confirmation Dialog” on page 10-53

“Setting Up the GUI with the Close Button” on page 10-54

“Running the GUI with the Close Button” on page 10-55

“How the GUI and Dialog Work” on page 10-56

Modal Dialog Example Outcome
This example illustrates how to use the modal dialog GUI together with
another GUI that has a Close button. Clicking the Close button displays the
modal dialog, which asks users to confirm that they really want to proceed
with the close operation.

The following figure illustrates the dialog positioned over the GUI application,
awaiting the user’s response.

View Completed Layouts and Their GUI M-Files
If you are reading this in the MATLAB Help Browser, you can click the
following links to display the GUIDE Layout Editor and the MATLAB Editor

10-52

Using a Modal Dialog to Confirm an Operation

with a completed version of this example. This enables you to see the values
of all component properties and to understand how the components are
assembled to create the GUI. You can also see a complete listing of the code
that is discussed in the following sections.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this online or
in PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the links.

• Click here to display the GUIs in the Layout Editor.

• Click here to display the GUI M-files in the editor.

Setting Up the Close Confirmation Dialog
To set up the dialog, do the following:

1 Select New from the File menu in the GUIDE Layout Editor.

2 In the GUIDE Quick Start dialog, select the Modal Question Dialog
template and click OK.

3 Right-click the static text, Do you want to create a question
dialog?, in the Layout Editor and select Property Inspector from the
pop-up menu.

4 Scroll down to String in the Property Inspector and change the String
property to Are you sure you want to close?

5 Select Save from the File menu and type modaldlg.fig in the File name
field.

10-53

10 Examples of GUIDE GUIs

The GUI should now appear as in the following figure.

Setting Up the GUI with the Close Button
To set up the second GUI with a Close button, do the following:

1 Select New from the File menu in the GUIDE Layout Editor.

2 In the GUIDE Quick Start dialog, select Blank GUI (Default) and click
OK. This opens the blank GUI in a new Layout Editor window.

3 Drag a push button from the Component palette of the Layout Editor into
the layout area.

4 Right-click the push button and select Property Inspector from the
pop-up menu.

5 Change the String property to Close.

6 Change the Tag property to close_pushbutton.

7 Click the M-file Editor icon on the toolbar of the Layout Editor.

8 Click the Show functions icon on the toolbar of the M-file editor and
select close_pushbutton_Callback from the menu.

The following generated code for the Close button callback should appear
in the M-file editor:

10-54

Using a Modal Dialog to Confirm an Operation

% --- Executes on button press in close_pushbutton.

function close_pushbutton_Callback(hObject, eventdata, handles)

% hObject handle to close_pushbutton (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

9 After these comments, add the following code:

% Get the current position of the GUI from the handles structure

% to pass to the modal dialog.

pos_size = get(handles.figure1,'Position');

% Call modaldlg with the argument 'Position'.

user_response = modaldlg('Title','Confirm Close');

switch user_response

case {'No'}

% take no action

case 'Yes'

% Prepare to close GUI application window

% .

% .

% .

delete(handles.figure1)

end

Running the GUI with the Close Button
Run the GUI with the Close button by clicking the Run button on the Layout
Editor toolbar. The GUI appears as in the following figure:

10-55

10 Examples of GUIDE GUIs

When you click the Close button on the GUI, the modal dialog appears as
shown in the following figure:

Clicking the Yes button closes both the close dialog and the GUI that calls
it. Clicking the No button closes just the dialog.

How the GUI and Dialog Work
This section describes what occurs when you click the Close button on the
GUI:

1 User clicks the Close button. Its callback then

• Gets the current position of the GUI from the handles structure with
the command

pos_size = get(handles.figure1,'Position')

• Calls the modal dialog with the command

user_response = modaldlg('Title','Confirm Close');

This is an example of calling a GUI with a property value pair. In this
case, the figure property is 'Title', and its value is the string 'Confirm
Close'. Opening modaldlg with this syntax displays the text “Confirm
Close” at the top of the dialog.

2 The modal dialog opens with the 'Position' obtained from the GUI that
calls it.

3 The opening function in the modal dialog M-file:

• Makes the dialog modal.

10-56

Using a Modal Dialog to Confirm an Operation

• Executes the uiwait command, which causes the dialog to wait for the
user to click the Yes button or the No button, or click the close box (X) on
the window border.

4 When a user clicks one of the two push buttons, the callback for the push
button

• Updates the output field in the handles structure

• Executes uiresume to return control to the opening function where
uiwait is called.

5 The output function is called, which returns the string Yes or No as an
output argument, and deletes the dialog with the command

delete(handles.figure1)

6 When the GUI with the Close button regains control, it receives the string
Yes or No. If the answer is 'No', it does nothing. If the answer is 'Yes', the
Close button callback closes the GUI with the command

delete(handles.figure1)

10-57

10 Examples of GUIDE GUIs

10-58

Creating GUIs
Programmatically

Chapter 11, Laying Out a GUI
(p. 11-1)

Shows you how to create and
organize the GUI M-file and from
there how to populate the GUI
and construct menus and toolbars.
Provides guidance in designing
a GUI for cross-platform
compatibility.

Chapter 12, Programming the
GUI (p. 12-1)

Explains how user-written
callback routines control GUI
behavior. Shows you how to
associate callbacks with specific
components and explains callback
syntax and arguments. Provides
simple programming examples
for each kind of component.

Chapter 13, Managing
Application-Defined Data
(p. 13-1)

Explains the mechanisms for
managing application-defined
data and explains how to share
data among a GUI’s callbacks.

Chapter 14, Managing Callback
Execution (p. 14-1)

==Type chapter abstract here==

Chapter 15, Examples of GUIs
Created Programmatically
(p. 15-1)

Provides three examples that
illustrate the application of some
programming techniques used to
create GUIs.

11

Laying Out a GUI

Designing a GUI (p. 11-2) Things to think about when
designing a GUI and references to
other sources.

Creating and Running the GUI
M-File (p. 11-4)

Provides information about typical
GUI M-file organization and tells
you how to run the GUI.

Creating the GUI Figure (p. 11-7) Tells you how to create the
GUI figure and introduces some
commonly used figure properties.

Adding Components to the GUI
(p. 11-10)

Describes the code needed for adding
and labeling GUI components and
introduces some of the commonly
used properties.

Aligning Components (p. 11-38) Tells you how to align components.

Setting Tab Order (p. 11-41) Explains tab order and shows you
how to set it.

Creating Menus (p. 11-45) Shows you how to create menus that
appear on the figure menu bar and
context menus.

Creating Toolbars (p. 11-56) Shows you how to add toolbars to
your GUI and tools to your toolbars.

Designing for Cross-Platform
Compatibility (p. 11-62)

Provides pointers for creating GUIs
that behave more consistently when
run on different platforms.

11 Laying Out a GUI

Designing a GUI
Before creating the actual GUI, it is important to decide what it is you want
your GUI to do and how you want it to work. It is helpful to draw your GUI on
paper and envision what the user sees and what actions the user takes.

Note MATLAB provides a selection of standard dialog boxes that you can
create with a single function call. For information about these dialog boxes
and the functions used to create them, see “Predefined Dialog Boxes” in the
MATLAB Function Reference documentation.

The GUI used in this example contains an axes component that displays
either a surface, mesh, or contour plot of data selected from the pop-up menu.
The following picture shows a sketch that you might use as a starting point
for the design.

A panel contains three push buttons that enable you to choose the type of plot
you want. The pop-up menu contains three strings—peaks, membrane, and
sinc, which correspond to MATLAB functions and generate data to plot. You
can select the data to plot from this menu.

11-2

Designing a GUI

Many Web sites and commercial publications such as the following provide
guidelines for designing GUIs:

• AskTog — Essays on good design and a list of First Principles for good user
interface design. The author, Tognazzini, is a well-respected user interface
designer. http://www.asktog.com/basics/firstPrinciples.html.

• Galitz, Wilbert, O., Essential Guide to User Interface Design. Wiley, New
York, NY, 2002.

• GUI Design Handbook — A detailed guide to the use of GUI controls.
http://www.fast-consulting.com/GUI%20Design%20Handbook/
GDH_FRNTMTR.htm.

• Johnson, J., GUI Bloopers: Don’ts and Do’s for Software Developers and
Web Designers. Morgan Kaufmann, San Francisco, CA, 2000.

• Usability Glossary — An extensive glossary of terms
related to GUI design, usability, and related topics.
http://www.usabilityfirst.com/glossary/main.cgi.

• UsabilityNet — Covers design principles, user-centered
design, and other usability and design-related topics.
http://www.usabilitynet.org/management/b_design.htm.

11-3

http://www.asktog.com/basics/firstPrinciples.html
http://www.fast-consulting.com/GUI%20Design%20Handbook/GDH_FRNTMTR.htm
http://www.usabilityfirst.com/glossary/main.cgi
http://www.usabilitynet.org/management/b_design.htm

11 Laying Out a GUI

Creating and Running the GUI M-File

In this section...

“File Organization” on page 11-4

“File Template” on page 11-4

“Running the GUI” on page 11-5

Note For an example of creating an M-file, see Chapter 3, “Creating a Simple
GUI Programmatically” in the “Getting Started” part of this document.

File Organization
Typically, a GUI M-file has the following ordered sections. You can help to
maintain the organization by adding comments that name the sections when
you first create them.

1 Comments displayed in response to the MATLAB help command.

2 Initialization tasks such as data creation and any processing that is needed
to construct the components. See “Initializing the GUI” on page 12-4 for
more information.

3 Construction of figure and components. For more information, see
“Creating the GUI Figure” on page 11-7 and “Adding Components to the
GUI” on page 11-10.

4 Initialization tasks that require the components to exist, and output return.
See “Initializing the GUI” on page 12-4 for more information.

5 Callbacks for the components. Callbacks are the routines that execute in
response to user-generated events such as mouse clicks and key strokes.
See Chapter 12, “Programming the GUI” for more information.

6 Utility functions.

File Template
This is a template for a GUI M-file:

11-4

Creating and Running the GUI M-File

function varargout = mygui(varargin)
% MYGUI Brief description of GUI.
% Comments displayed at the command line in response
% to the help command.

% (Leave a blank line following the help.)

% Initialization tasks

% Construct the components

% Initialization tasks

% Callbacks for MYGUI

% Utility functions for MYGUI

end

The end statement that matches the function statement is necessary
because this document treats GUI creation using nested functions. Chapter
12, “Programming the GUI” addresses this topic.

Save the file in your current directory or at a location that is on your MATLAB
path.

Running the GUI
You can display your GUI at any time by executing its M-file. For example,
if your GUI M-file is mygui.m, type

mygui

at the command line. Provide run-time arguments as appropriate. The files
must reside on your path or in your current directory.

When you execute the GUI M-file, a fully functional copy of the GUI displays
on the screen. You can manipulate components that it contains, but nothing
happens unless the M-file includes code to initialize the GUI and callbacks

11-5

11 Laying Out a GUI

to service the components. Chapter 12, “Programming the GUI” tells you
how to do this.

11-6

Creating the GUI Figure

Creating the GUI Figure
In MATLAB, a GUI is a figure. Before you add components to it, create the
figure explicitly and obtain a handle for it. In the initialization section of your
file, use a statement such as the following to create the figure:

fh = figure;

where fh is the figure handle.

Note If you create a component when there is no figure, MATLAB creates a
figure automatically but you do not know the figure handle.

When you create the figure, you can also specify properties for the figure. The
most commonly used figure properties are shown in the following table:

Property Values Description

MenuBar figure, none. Default is
figure.

Display or hide the MATLAB
standard menu bar menus.
If none and there are no
user-created menus, the
menu bar itself is removed.

Name String Title displayed in the figure
window. If NumberTitle is
on, this string is appended to
the figure number.

NumberTitle on, off. Default is on. Determines whether the
string ’Figure n' (where
n is the figure number) is
prefixed to the figure window
title specified by Name.

Position 4-element vector: [distance
from left, distance from
bottom, width, height].

Size of the GUI figure and
its location relative to the
lower-left corner of the
screen.

11-7

11 Laying Out a GUI

Property Values Description

Resize on, off. Default is on. Determines if the user can
resize the figure window with
the mouse.

Toolbar auto, none, figure. Default
is auto.

Display or hide the default
figure toolbar.

• none — do not display the
figure toolbar.

• auto — display the figure
toolbar, but remove it if
a user interface control
(uicontrol) is added to
the figure.

• figure — display the
figure toolbar.

Units pixels, centimeters,
characters, inches,
normalized, points, Default
is pixels.

Units of measurement used
to interpret position vector

Visible on, off. Default is on. Determines whether a figure
is displayed on the screen.

For a complete list of properties and for more information about the properties
listed in the table, see the Figure Properties reference page in the MATLAB
reference documentation.

The following statement names the figure My GUI, positions the figure on
the screen, and makes the GUI invisible so that the user cannot see the
components as they are added or initialized. All other properties assume
their defaults.

f = figure('Visible','off','Name','My GUI',...
'Position',[360,500,450,285]);

11-8

Creating the GUI Figure

The Position property is a four-element vector that specifies the location of
the GUI on the screen and its size: [distance from left, distance from bottom,
width, height]. Default units are pixels.

If the figure were visible, it would look like this:

The next topic, “Adding Components to the GUI” on page 11-10, shows you
how to add push buttons, axes, and other components to the GUI. “Creating
Menus” on page 11-45 shows you how to create toolbar and context menus.
“Creating Toolbars” on page 11-56 shows you how to add your own toolbar
to a GUI.

11-9

11 Laying Out a GUI

Adding Components to the GUI

In this section...

“Available Components” on page 11-10

“Adding User Interface Controls” on page 11-13

“Adding Panels and Button Groups” on page 11-28

“Adding Axes” on page 11-33

“Adding ActiveX Controls” on page 11-37

Available Components
Components include user interface controls such as push buttons and sliders,
containers such as panels and button groups, axes, and ActiveX controls. This
topic tells you how to populate your GUI with these components.

Note MATLAB provides a selection of standard dialog boxes that you can
create with a single function call. For information about these dialog boxes
and the functions used to create them, see “Predefined Dialog Boxes” in the
MATLAB Function Reference documentation.

The following table describes the available components and the function used
to create each. Subsequent topics provide specific information about adding
the components.

Component Function Description

ActiveX actxcontrol ActiveX components enable you to
display ActiveX controls in your
GUI. They are available only on the
Microsoft Windows platform.

“Axes” on page
11-35

axes Axes enable your GUI to display
graphics such as graphs and images.

11-10

Adding Components to the GUI

Component Function Description

“Button Group”
on page 11-32

uibuttongroup Button groups are like panels, but are
used to manage exclusive selection
behavior for radio buttons and toggle
buttons.

“Check Box” on
page 11-16

uicontrol Check boxes can generate an action
when checked and indicate their state
as checked or not checked. Check
boxes are useful when providing the
user with a number of independent
choices, for example, displaying a
toolbar.

“Edit Text” on
page 11-17

uicontrol Edit text components are fields that
enable users to enter or modify text
strings. Use an edit text when you
want text as input. Users can enter
numbers, but you must convert them
to their numeric equivalents.

“List Box” on
page 11-18

uicontrol List boxes display a list of items and
enable users to select one or more
items.

“Panel” on page
11-30

uipanel Panels arrange GUI components into
groups. By visually grouping related
controls, panels can make the user
interface easier to understand. A
panel can have a title and various
borders.

Panel children can be user interface
controls and axes, as well as button
groups and other panels. The position
of each component within a panel is
interpreted relative to the panel. If
you move the panel, its children move
with it and maintain their positions
on the panel.

11-11

11 Laying Out a GUI

Component Function Description

“Pop-Up Menu”
on page 11-20

uicontrol Pop-up menus open to display a list of
choices when users click the arrow.

“Push Button”
on page 11-21

uicontrol Push buttons generate an action
when clicked. For example, an OK
button might apply settings and close
a dialog box. When you click a push
button, it appears depressed; when
you release the mouse button, the
push button appears raised.

“Radio Button”
on page 11-23

uicontrol Radio buttons are similar to check
boxes, but radio buttons are typically
mutually exclusive within a group of
related radio buttons. That is, when
you select one button the previously
selected button is deselected. To
activate a radio button, click the
mouse button on the object. The
display indicates the state of the
button. Use a button group to manage
mutually exclusive radio buttons.

“Slider” on page
11-24

uicontrol Sliders accept numeric input within
a specified range by enabling the
user to move a sliding bar, which is
called a slider or thumb. Users move
the slider by clicking the slider and
dragging it, by clicking in the trough,
or by clicking an arrow. The location
of the slider indicates the relative
location within the specified range.

11-12

Adding Components to the GUI

Component Function Description

“Static Text” on
page 11-26

uicontrol Static text controls display lines of
text. Static text is typically used
to label other controls, provide
directions to the user, or indicate
values associated with a slider.
Users cannot change static text
interactively.

“Toggle Button”
on page 11-27

uicontrol Toggle buttons generate an action
and indicate whether they are turned
on or off. When you click a toggle
button, it appears depressed, showing
that it is on. When you release the
mouse button, the toggle button
remains depressed until you click it
a second time. When you do so, the
button returns to the raised state,
showing that it is off. Use a button
group to manage mutually exclusive
radio buttons.

Components are sometimes referred to by the name of the function used to
create them. For example, a push button is created using the uicontrol
function, and it is sometimes referred to as a uicontrol. A panel is created
using the uipanel function and may be referred to as a uipanel.

Adding User Interface Controls
Use the uicontrol function to create user interface controls. These include
push buttons, toggle buttons, sliders, radio buttons, edit text controls, static
text controls, pop-up menus, check boxes, and list boxes.

Note See “Available Components” on page 11-10 for descriptions of these
components. See “Programming User Interface Controls” on page 12-15 for
basic examples of programming these components.

11-13

11 Laying Out a GUI

A syntax for the uicontrol function is

uich = uicontrol(parent,'PropertyName',PropertyValue,...)

where uich is the handle of the resulting user interface control. If you do
not specify parent, the component parent is the current figure as specified
by the root CurrentFigure property. See the uicontrol reference page for
other valid syntaxes.

Subsequent topics describe commonly used properties of user interface
controls and offer a simple example for each kind of control:

• “Commonly Used Properties” on page 11-14

• “Check Box” on page 11-16

• “Edit Text” on page 11-17

• “List Box” on page 11-18

• “Pop-Up Menu” on page 11-20

• “Push Button” on page 11-21

• “Radio Button” on page 11-23

• “Slider” on page 11-24

• “Static Text” on page 11-26

• “Toggle Button” on page 11-27

Commonly Used Properties
The most commonly used properties needed to describe a user interface
control are shown in the following table:

Property Values Description

Max Scalar. Default is 1. Maximum value.
Interpretation depends
on the Style property.

Min Scalar. Default is 0. Minimum value.
Interpretation depends
on the Style property.

11-14

Adding Components to the GUI

Property Values Description

Position 4-element vector: [distance
from left, distance from
bottom, width, height].
Default is [20, 20, 60, 20].

Size of the component and
its location relative to its
parent.

String String. Can be a cell
array or character array or
strings.

Component label. For list
boxes and pop-up menus it is
a list of the items. To display
the & character in a label,
use two & characters in the
string. The words remove,
default, and factory (case
sensitive) are reserved. To
use one of these as a label,
prepend a backslash (\) to
the string. For example,
\remove yields remove.

Style pushbutton,
togglebutton,
radiobutton, checkbox,
edit, text, slider,
listbox, popupmenu.
Default is pushbutton.

Type of user interface
control object.

Units pixels, centimeters,
characters, inches,
normalized, points,
Default is pixels.

Units of measurement used
to interpret position vector

Value Scalar or vector Value of the component.
Interpretation depends on
the Style property.

For a complete list of properties and for more information about the properties
listed in the table, see Uicontrol Properties in the MATLAB Function
Reference documentation. Properties needed to control GUI behavior are
discussed in Chapter 12, “Programming the GUI” .

11-15

11 Laying Out a GUI

Check Box
The following statement creates a check box with handle cbh.

cbh = uicontrol(fh,'Style','checkbox',...
'String','Display file extension',...
'Value',1,'Position',[30 20 130 20]);

The first argument, fh, specifies the handle of the parent figure. You can also
specify the parent as a panel or button group. See “Panel” on page 11-30 and
“Button Group” on page 11-32 for more information.

The Style property, checkbox, specifies the user interface control as a check
box.

The String property labels the check box as Display file extension. The
check box accommodates only a single line of text. If you specify a component
width that is too small to accommodate the specified String, MATLAB
truncates the string with an ellipsis.

The Value property specifies whether the box is checked. Set Value to the
value of the Max property (default is 1) to create the component with the
box checked. Set Value to Min (default is 0) to leave the box unchecked.
Correspondingly, when the user clicks the check box, MATLAB sets Value to
Max when the user checks the box and to Min when the user unchecks it.

The Position property specifies the location and size of the list box. In this
example, the list box is 130 pixels wide and 20 high. It is positioned 30 pixels
from the left of the figure and 20 pixels from the bottom. The statement
assumes the default value of the Units property, which is pixels.

11-16

Adding Components to the GUI

Note You can also use an image as a label. See “Adding an Image to a Push
Button” on page 11-22 for more information.

Edit Text
The following statement creates an edit text component with handle eth:

eth = uicontrol(fh,'Style','edit',...
'String','Enter your name here.',...
'Position',[30 50 130 20]);

The first argument, fh, specifies the handle of the parent figure. You can also
specify the parent as a panel or button group. See “Panel” on page 11-30 and
“Button Group” on page 11-32 for more information.

The Style property, edit, specifies the user interface control as an edit text
component.

The String property defines the text that appears in the component.

To enable multiple-line input, Max - Min must be greater than 1, as in the
following statement. MATLAB wraps the string if necessary.

eth = uicontrol(fh,'Style','edit',...
'String','Enter your name and address here.',...
'Max',2,'Min',0,...
'Position',[30 20 130 80]);

11-17

11 Laying Out a GUI

If Max-Min is less than or equal to 1, the edit text component admits only a
single line of input. If you specify a component width that is too small to
accommodate the specified string, MATLAB displays only part of the string.
The user can use the arrow keys to move the cursor over the entire string.

The Position property specifies the location and size of the edit text
component. In this example, the edit text is 130 pixels wide and 20 high. It is
positioned 30 pixels from the left of the figure and 50 pixels from the bottom.
The statement assumes the default value of the Units property, which is
pixels.

List Box
The following statement creates a list box with handle lbh:

lbh = uicontrol(fh,'Style','listbox',...
'String',{'one','two','three','four'},...
'Value',1,'Position',[30 80 130 20]);

The first argument, fh, specifies the handle of the parent figure. You can also
specify the parent as a panel or button group. See “Panel” on page 11-30 and
“Button Group” on page 11-32 for more information.

11-18

Adding Components to the GUI

The Style property, listbox, specifies the user interface control as a list box.

The String property defines the list items. You can specify the items in any of
the formats shown in the following table.

String Property
Format

Example

Cell array of strings {'one' 'two' 'three'}

Padded string matrix ['one ';'two ';'three']

String vector separated
by vertical slash (|)
characters

['one|two|three']

If you specify a component width that is too small to accommodate one or more
of the specified strings, MATLAB truncates those strings with an ellipsis.

The Value property specifies the item or items that are selected when the
component is created. To select a single item, set Value to a scalar that
indicates the index of the selected list item, where 1 corresponds to the first
item in the list.

To select more than one item, set Value to a vector of indices of the selected
items. To enable selection of more than one item, Max - Min must be greater
than 1, as in the following statement:

lbh = uicontrol(fh,'Style','listbox',...
'String',{'one','two','three','four'},...
'Max',2,'Min',0,'Value',[1 3],,...
'Position',[30 20 130 80]);

If you want no initial selection:

11-19

11 Laying Out a GUI

1 Set the Max and Min properties to enable multiple selection

2 Set the Value property to an empty matrix [].

If the list box is not large enough to display all list entries, you can set the
ListBoxTop property to the index of the item you want to appear at the top
when the component is created.

The Position property specifies the location and size of the list box. In this
example, the list box is 130 pixels wide and 80 high. It is positioned 30 pixels
from the left of the figure and 20 pixels from the bottom. The statement
assumes the default value of the Units property, which is pixels.

The list box does not provide for a label. Use a static text component to label
the list box.

Pop-Up Menu
The following statement creates a pop-up menu (also known as a drop-down
menu or combo box) with handle pmh:

pmh = uicontrol(fh,'Style','popupmenu',...
'String',{'one','two','three','four'},...
'Value',1,'Position',[30 80 130 20]);

The first argument, fh, specifies the handle of the parent figure. You can also
specify the parent as a panel or button group. See “Panel” on page 11-30 and
“Button Group” on page 11-32 for more information.

The Style property, popupmenu, specifies the user interface control as a
pop-up menu.

11-20

Adding Components to the GUI

The String property defines the menu items. You can specify the items in
any of the formats shown in the following table.

String Property
Format

Example

Cell array of strings {'one' 'two' 'three'}

Padded string matrix ['one ';'two ';'three']

String vector separated
by vertical slash (|)
characters

['one|two|three']

If you specify a component width that is too small to accommodate one or more
of the specified strings, MATLAB truncates those strings with an ellipsis.

The Value property specifies the index of the item that is selected when the
component is created. Set Value to a scalar that indicates the index of the
selected menu item, where 1 corresponds to the first item in the list. In the
statement, if Value is 2, the menu looks like this when it is created:

The Position property specifies the location and size of the pop-up menu. In
this example, the pop-up menu is 130 pixels wide. It is positioned 30 pixels
from the left of the figure and 80 pixels from the bottom. The height of a
pop-up menu is determined by the font size; the height you set in the position
vector is ignored. The statement assumes the default value of the Units
property, which is pixels.

The pop up menu does not provide for a label. Use a static text component to
label the pop-up menu.

Push Button
The following statement creates a push button with handle pbh:

pbh = uicontrol(fh,'Style','pushbutton','String','Button 1',...
'Position',[50 20 60 40]);

11-21

11 Laying Out a GUI

The first argument, fh, specifies the handle of the parent figure. You can also
specify the parent as a panel or button group. See “Panel” on page 11-30 and
“Button Group” on page 11-32 for more information.

The Style property, pushbutton, specifies the user interface control as a push
button. Because pushbutton is the default style, you can omit the 'Style'
property from the statement.

The String property labels the push button as Button 1. The push button
allows only a single line of text. If you specify more than one line, only the
first line is shown. If you specify a component width that is too small to
accommodate the specified String, MATLAB truncates the string with an
ellipsis.

The Position property specifies the location and size of the push button. In
this example, the push button is 60 pixels wide and 40 high. It is positioned
50 pixels from the left of the figure and 20 pixels from the bottom. This
statement assumes the default value of the Units property, which is pixels.

Adding an Image to a Push Button. To add an image to a push button,
assign the button’s CData property an m-by-n-by-3 array of RGB values
that defines a truecolor image. For example, the array img defines 16-by-64
truecolor image using random values between 0 and 1 (generated by rand).

img(:,:,1) = rand(16,64);
img(:,:,2) = rand(16,64);
img(:,:,3) = rand(16,64);

11-22

Adding Components to the GUI

pbh = uicontrol(fh,'Style','pushbutton',...
'Position',[50 20 100 45],...
'CData',img);

Note Create your own icon with the icon editor described in “Icon Editor”
on page 15-29. See ind2rgb for information on converting a matrix X and
corresponding colormap, i.e., an (X, MAP) image, to RGB (truecolor) format.

Radio Button
The following statement creates a radio button with handle rbh:

rbh = uicontrol(fh,'Style','radiobutton',...
'String','Indent nested functions.',...
'Value',1,'Position',[30 20 150 20]);

The first argument, fh, specifies the handle of the parent figure. You can also
specify the parent as a panel or button group. Use a button group to manage
exclusive selection of radio buttons and toggle buttons. See “Panel” on page
11-30 and “Button Group” on page 11-32 for more information.

The Style property, radiobutton, specifies the user interface control as a
radio button.

The String property labels the radio button as Indent nested functions.
The radio button allows only a single line of text. If you specify more than

11-23

11 Laying Out a GUI

one line, only the first line is shown. If you specify a component width that
is too small to accommodate the specified String, MATLAB truncates the
string with an ellipsis.

The Value property specifies whether the radio button is selected when the
component is created. Set Value to the value of the Max property (default is
1) to create the component with the radio button selected. Set Value to Min
(default is 0) to leave the radio button unselected.

The Position property specifies the location and size of the radio button. In
this example, the radio button is 150 pixels wide and 20 high. It is positioned
30 pixels from the left of the figure and 20 pixels from the bottom. The
statement assumes the default value of the Units property, which is pixels.

Note You can also use an image as a label. See “Adding an Image to a Push
Button” on page 11-22 for more information.

Slider
The following statement creates a slider with handle sh:

sh = uicontrol(fh,'Style','slider',...
'Max',100,'Min',0,'Value',25,...
'SliderStep',[0.05 0.2],...
'Position',[30 20 150 30]);

11-24

Adding Components to the GUI

The first argument, fh, specifies the handle of the parent figure. You can also
specify the parent as a panel or button group. See “Panel” on page 11-30 and
“Button Group” on page 11-32 for more information.

The Style property, slider, specifies the user interface control as a slider.

The Max property is the maximum value of the slider. The Min property is the
minimum value of the slider and must be less than Max.

The Value property specifies the value indicated by the slider when it is
created. Set Value to a number that is less than or equal to Max and greater
than or equal to Min. If you specify Value outside the specified range, the
slider is not rendered.

The SliderStep property controls the amount the slider Value changes when
a user clicks the arrow button to produce a minimum step or the slider trough
to produce a maximum step. Specify SliderStep as a two-element vector,
[min_step,max_step], where each value is in the range [0, 1].

The example provides a 5 percent minimum step and a 20 percent maximum
step. The default, [0.01 0.10], provides a 1 percent minimum step and a
10 percent maximum step.

The Position property specifies the location and size of the slider. In this
example, the slider is 150 pixels wide and 30 high. It is positioned 30 pixels
from the left of the figure and 20 pixels from the bottom. The statement
assumes the default value of the Units property, which is pixels.

Note On Mac platforms, the height of a horizontal slider is constrained. If
the height you set in the position vector exceeds this constraint, the displayed
height of the slider is the maximum allowed. The height element of the
position vector is not changed.

11-25

11 Laying Out a GUI

The slider component provides no text description. Use static text components
to label the slider.

Static Text
The following statement creates a static text component with handle sth:

sth = uicontrol(fh,'Style','text',...
'String','Select a data set.',...
'Position',[30 50 130 20]);

The first argument, fh, specifies the handle of the parent figure. You can also
specify the parent as a panel or button group. See “Panel” on page 11-30 and
“Button Group” on page 11-32 for more information.

The Style property, text, specifies the user interface control as a static text
component.

The String property defines the text that appears in the component. If you
specify a component width that is too small to accommodate the specified
String, MATLAB wraps the string.

The Position property specifies the location and size of the static text
component. In this example, the static text is 130 pixels wide and 20 high.
It is positioned 30 pixels from the left of the figure and 50 pixels from the
bottom. The statement assumes the default value of the Units property,
which is pixels.

11-26

Adding Components to the GUI

Toggle Button
The following statement creates a toggle button with handle tbh:

tbh = uicontrol(fh,'Style','togglebutton',...
'String','Left/Right Tile',...
'Value',0,'Position',[30 20 100 30]);

The first argument, fh, specifies the handle of the parent figure. You can also
specify the parent as a panel or button group. Use a button group to manage
exclusive selection of radio buttons and toggle buttons. See “Panel” on page
11-30 and “Button Group” on page 11-32 for more information.

The Style property, togglebutton, specifies the user interface control as
a toggle button.

The String property labels the toggle button as Left/Right Tile. The toggle
button allows only a single line of text. If you specify more than one line,
only the first line is shown. If you specify a component width that is too
small to accommodate the specified String, MATLAB truncates the string
with an ellipsis.

The Value property specifies whether the toggle button is selected when the
component is created. Set Value to the value of the Max property (default is
1) to create the component with the toggle button selected (depressed). Set
Value to Min (default is 0) to leave the toggle button unselected (raised). The
following figure shows the toggle button in the depressed position.

11-27

11 Laying Out a GUI

The Position property specifies the location and size of the toggle button. In
this example, the toggle button is 100 pixels wide and 30 high. It is positioned
30 pixels from the left of the figure and 20 pixels from the bottom. The
statement assumes the default value of the Units property, which is pixels.

Note You can also use an image as a label. See “Adding an Image to a Push
Button” on page 11-22 for more information.

Adding Panels and Button Groups
Panels and button groups are containers that arrange GUI components into
groups. If you move the panel or button group, its children move with it and
maintain their positions relative to the panel or button group.

Note See “Available Components” on page 11-10 for descriptions of these
components.

Use the uipanel and uibuttongroup functions to create these components.

A syntax for panels is

ph = uipanel(fh,'PropertyName',PropertyValue,...)

where ph is the handle of the resulting panel. The first argument, fh, specifies
the handle of the parent figure. You can also specify the parent as a panel or
button group. See the uipanel reference page for other valid syntaxes.

A syntax for button groups is

bgh = uibuttongroup('PropertyName',PropertyValue,...)

11-28

Adding Components to the GUI

where bgh is the handle of the resulting button group. For button groups,
you must use the Parent property to specify the component parent. See the
uibuttongroup reference page for other valid syntaxes.

For both panels and button groups, if you do not specify a parent, the
component parent is the current figure as specified by the root CurrentFigure
property.

Subsequent topics describe commonly used properties of panels and button
groups and offer a simple example for each component.

• “Commonly Used Properties” on page 11-29

• “Panel” on page 11-30

• “Button Group” on page 11-32

Commonly Used Properties
The most commonly used properties needed to describe a panel or button
group are shown in the following table:

Property Values Description

Parent Handle Handle of the component’s parent
figure, panel, or button group.

Position 4-element vector:
[distance from left,
distance from bottom,
width, height].
Default is [0, 0, 1,
1].

Size of the component and its
location relative to its parent.

11-29

11 Laying Out a GUI

Property Values Description

Title String Component label. To display
the & character in a label, use
two & characters in the string.
The words remove, default,
and factory (case sensitive) are
reserved. To use one of these as a
label, prepend a backslash (\) to
the string. For example, \remove
yields remove.

TitlePosition lefttop, centertop,
righttop,
leftbottom,
centerbottom,
rightbottom. Default
is lefttop.

Location of title string in relation
to the panel or button group.

Units normalized,
centimeters,
characters, inches,
pixels, points.
Default is normalized.

Units of measurement used to
interpret position vector

For a complete list of properties and for more information about the properties
listed in the table, see Uipanel Properties and Uibuttongroup Properties
in the MATLAB Function Reference documentation. Properties needed to
control GUI behavior are discussed in Chapter 12, “Programming the GUI”.

Panel
The following statement creates a panel with handle ph. Use a panel to group
components in the GUI.

ph = uipanel('Parent',fh,'Title','My Panel',...
'Position',[.25 .1 .5 .8]);

11-30

Adding Components to the GUI

The Parent property specifies the handle fh of the parent figure. You can also
specify the parent as a panel or button group.

The Title property labels the panel as My Panel.

The statement assumes the default TitlePosition property, which is
lefttop.

The Units property is used to interpret the Position property. This panel
assumes the default Units property, normalized. This enables the panel to
resize automatically if the figure is resized.

The Position property specifies the location and size of the panel. In this
example, the panel is 50 percent of the width of the figure and 80 percent of
its height. It is positioned 25 percent of the figure width from the left of the
figure and 10 percent of the figure height from the bottom. As the figure is
resized the panel retains these proportions.

The following statements add two push buttons to the panel with handle
ph. The Position property of each component within a panel is interpreted
relative to the panel.

pbh1 = uicontrol(ph,'Style','pushbutton','String','Button 1',...
'Units','normalized',...
'Position',[.1 .55 .8 .3]);

pbh2 = uicontrol(ph,'Style','pushbutton','String','Button 2',...

11-31

11 Laying Out a GUI

'Units','normalized',...
'Position',[.1 .15 .8 .3]);

See “Push Button” on page 11-21 for more information about adding push
buttons.

Button Group
The following statement creates a button group with handle bgh. Use a button
group to exclusively manage radio buttons and toggle buttons.

bgh = uibuttongroup('Parent',fh,'Title','My Button Group',...
'Position',[.1 .2 .8 .6]);

The Parent property specifies the handle fh of the parent figure. You can also
specify the parent as a panel or button group.

The Title property labels the button group as My Button Group.

11-32

Adding Components to the GUI

The statement assumes the default TitlePosition property, which is
lefttop.

The Units property is used to interpret the Position property. This button
group assumes the default Units property, normalized. This enables the
button group to resize automatically if the figure is resized.

The Position property specifies the location and size of the button group. In
this example, the button group is 80 percent of the width of the figure and 60
percent of its height. It is positioned 10 percent of the figure width from the
left of the figure and 20 percent of the figure height from the bottom. As the
figure is resized the button group retains these proportions.

The following statements add two radio buttons to the button group with
handle bgh.

rbh1 = uicontrol(bgh,'Style','radiobutton','String','Red',...
'Units','normalized',...
'Position',[.1 .6 .3 .2]);

rbh2 = uicontrol(bgh,'Style','radiobutton','String','Blue',...
'Units','normalized',...
'Position',[.1 .2 .3 .2]);

By default, MATLAB automatically selects the first radio button added to
a button group. You can use the radio button Value property to explicitly
specify the initial selection. See “Radio Button” on page 11-23 for information.

Adding Axes
Axes enable your GUI to display graphics such as graphs and images using
commands such as: plot, surf, line, bar, polar, pie, contour, and mesh.

11-33

11 Laying Out a GUI

Note See “Available Components” on page 11-10 for a description of this
component.

Use the axes function to create an axes. A syntax for this function is

ah = axes('PropertyName',PropertyValue,...)

where ah is the handle of the resulting axes. You must use the Parent
property to specify the axes parent. If you do not specify Parent, the parent is
the current figure as specified by the root CurrentFigure property. See the
axes reference page for other valid syntaxes.

Subsequent topics describe commonly used properties of axes and offer a
simple example.

• “Commonly Used Properties” on page 11-34

• “Axes” on page 11-35

Commonly Used Properties
The most commonly used properties needed to describe an axes are shown
in the following table:

Property Values Description

HandleVisibility on, callback, off. Default is
on.

Determines if an object’s handle
is visible in its parent’s list
of children. For axes, set
HandleVisibility to callback
to protect them from command
line operations.

Parent Handle Handle of the component’s
parent figure, panel, or button
group.

11-34

Adding Components to the GUI

Property Values Description

Position 4-element vector: [distance
from left, distance from bottom,
width, height].

Size of the component and its
location relative to its parent.

Units normalized, centimeters,
characters, inches, pixels,
points. Default is normalized.

Units of measurement used to
interpret position vector

For a complete list of properties and for more information about the properties
listed in the table, see Axes Properties in the MATLAB Function Reference
documentation. Properties needed to control GUI behavior are discussed in
Chapter 12, “Programming the GUI”.

See commands such as the following for more information on axes objects:
plot, surf, line, bar, polar, pie, contour and mesh. See “Functions — By
Category” in the MATLAB Function Reference documentation for a complete
list.

Axes
The following statement creates an axes with handle ah:

ah = axes('Parent',fh,'Position',[.15 .15 .7 .7]);

11-35

11 Laying Out a GUI

The Parent property specifies the handle fh of the parent figure. You can also
specify the parent as a panel or button group.

The Units property is used to interpret the Position property. This axes
assumes the default Units property, normalized. This enables the axes to
resize automatically if the figure is resized.

The Position property specifies the location and size of the axes. In this
example, the axes is 70 percent of the width of the figure and 70 percent of
its height. It is positioned 15 percent of the figure width from the left of the
figure and 15 percent of the figure height from the bottom. As the figure is
resized the axes retains these proportions.

MATLAB automatically adds the tick marks. Most functions that draw in the
axes update the tick marks appropriately.

11-36

Adding Components to the GUI

Adding ActiveX Controls
ActiveX components enable you to display ActiveX controls in your GUI. They
are available only on the Microsoft Windows platform.

An ActiveX control can be the child only of a figure, i.e., of the GUI itself. It
cannot be the child of a panel or button group.

See “Creating an ActiveX Control” in the MATLAB External Interfaces
documentation for information about adding an ActiveX control to a figure.
See “MATLAB COM Client Support” in the MATLAB External Interfaces
documentation for general information about ActiveX controls.

11-37

11 Laying Out a GUI

Aligning Components

In this section...

“Using the Align Function” on page 11-38

“Examples” on page 11-40

Using the Align Function
Use the align function to align user interface controls and axes. This function
enables you to align the components vertically and horizontally. You can also
distribute the components evenly, or specify a fixed distance between them.

A syntax for the align function is

align(HandleList,'HorizontalAlignment',...
'VerticalAlignment')

where HorizontalAlignment can be None, Left, Center, Right, Distribute,
or Fixed and VerticalAlignment can be None, Top, Middle, Bottom,
Distribute, or Fixed. All handles in HandleList must have the same parent.
See the align reference page for information about other syntaxes.

The following code creates three push buttons that are somewhat randomly
placed. Each subsequent example starts with these same three push buttons
and aligns them in different ways. Components are aligned with reference to
their bounding box, shown as a blue dashed line in the figures.

b1 = uicontrol(fh,'Posit',[30 10 60 30],'String','Button 1');
b2 = uicontrol(fh,'Posit',[50 50 60 30],'String','Button 2');
b3 = uicontrol(fh,'Posit',[10 80 60 30],'String','Button 3');

11-38

Aligning Components

11-39

11 Laying Out a GUI

Examples

• “Aligning Components Horizontally” on page 11-40

• “Aligning Components Horizontally While Distributing Them Vertically”
on page 11-40

• “Aligning Components Vertically While Distributing Them Horizontally”
on page 11-40

Aligning Components Horizontally
The following statement moves the push buttons horizontally to the right of
their bounding box. It does not alter their vertical positions. The figure shows
the original bounding box.

align([b1 b2 b3],'Right','None');

Aligning Components Horizontally While Distributing Them
Vertically
The following statement moves the push buttons horizontally to the center
of their bounding box and adjusts their vertical placement to create a fixed
distance of 7 points between the boxes. The push buttons appear in the center
of the original bounding box. The bottom push button remains at the bottom
of the original bounding box.

align([b1 b2 b3],'Center','Fixed',7);

11-40

Setting Tab Order

Setting Tab Order

In this section...

“How Tabbing Works” on page 11-41

“Default Tab Order” on page 11-41

“Changing the Tab Order” on page 11-43

How Tabbing Works
A GUI’s tab order is the order in which components of the GUI acquire focus
when a user presses the keyboard Tab key. Focus is generally denoted by
a border or a dotted border.

Tab order is determined separately for the children of each parent. For
example, child components of the GUI figure have their own tab order. Child
components of each panel or button group also have their own tab order.

If, in tabbing through the components at one level, a user tabs to a panel or
button group, then the tabbing sequences through the components of the
panel or button group before returning to the level from which the panel or
button group was reached. For example, if a GUI figure contains a panel that
contains three push buttons and the user tabs to the panel, then the tabbing
sequences through the three push buttons before returning to the figure.

Note You cannot tab to axes and static text components. You cannot
determine programmatically which component has focus.

Default Tab Order
The default tab order for each level is the order in which you create the
components at that level.

The following code creates a GUI that contains a pop-up menu with a static
text label, a panel with three push buttons, and an axes.

fh = figure('Position',[200 200 450 270]);
pmh = uicontrol(fh,'Style','popupmenu',...

11-41

11 Laying Out a GUI

'String',{'peaks','membrane','sinc'},...
'Position',[290 200 130 20]);

sth = uicontrol(fh,'Style','text','String','Select Data',...
'Position',[290 230 60 20]);

ph = uipanel('Parent',fh,'Units','pixels',...
'Position',[290 30 130 150]);

ah = axes('Parent',fh,'Units','pixels',...
'Position',[40 30 220 220]);

bh1 = uicontrol(ph,'Style','pushbutton',...
'String','Contour','Position',[20 20 80 30]);

bh2 = uicontrol(ph,'Style','pushbutton',...
'String','Mesh','Position',[20 60 80 30]);

bh3 = uicontrol(ph,'Style','pushbutton',...
'String','Surf','Position',[20 100 80 30]);

You can obtain the default tab order for a figure, panel, or button group by
retrieving its Children property. For the example, the statement is

ch = get(ph,'Children')

where ph is the handle of the panel. This statement returns a vector
containing the handles of the children, the three push buttons.

ch =

11-42

Setting Tab Order

4.0076
3.0076
2.0076

These handles correspond to the push buttons as shown in the following table:

Handle
Handle
Variable Push Button

4.0076 bh3 Surf

3.0076 bh2 Mesh

2.0076 bh1 Contour

The default tab order of the push buttons is the reverse of the order of the
child vector: Contour > Mesh > Surf.

Note The get function returns only those children whose handles are visible,
i.e., those with their HandleVisibility property set to on. Use allchild to
retrieve children regardless of their handle visibility.

In the example GUI figure, the default order is pop-up menu followed by the
panel’s Contour, Mesh, and Surf push buttons (in that order), and then
back to the pop-up menu. You cannot tab to the axes component or the static
text component.

Try modifying the code to create the pop-up menu following the creation of the
Contour push button and before the Mesh push button. Now execute the
code to create the GUI and tab through the components. This code change
does not alter the default tab order. This is because the pop-up menu does
not have the same parent as the push buttons. The figure is the parent of the
panel and the pop-up menu.

Changing the Tab Order
Use the uistack function to change the tab order of components that have the
same parent. A convenient syntax for uistack is

11-43

11 Laying Out a GUI

uistack(h,stackopt,step)

where h is a vector of handles of the components whose tab order is to be
changed.

stackopt represents the direction of the move. It must be one of the strings:
up, down, top, or bottom, and is interpreted relative to the column vector
returned by the statement:

ch = get(ph,'Children')

ch =
4.0076
3.0076
2.0076

If the tab order is currently Contour > Mesh > Surf, the statement

uistack(bh2,up,1)

moves bh2 (Surf) up one place in the vector of children and changes the tab
order to Contour > Surf > Mesh.

ch = get(ph,'Children')

now returns

ch =
3.0076
4.0076
2.0076

step is the number of levels changed. The default is 1.

Note Tab order also affects the stacking order of components. If components
overlap, those that appear lower in the child order, are drawn on top of
those that appear higher in the order. If the push buttons in the example
overlapped, the Contour push button would be on top.

11-44

Creating Menus

Creating Menus

In this section...

“Adding Menu Bar Menus” on page 11-45

“Adding Context Menus” on page 11-49

Adding Menu Bar Menus
Use the uimenu function to add a menu bar menu to your GUI. A syntax
for uimenu is

mh = uimenu(parent,'PropertyName',PropertyValue,...)

Where mh is the handle of the resulting menu or menu item. See the uimenu
reference page for other valid syntaxes.

These topics discuss use of the MATLAB standard menu bar menus and
describe commonly used menu properties and offer some simple examples.

• “Displaying Standard Menu Bar Menus” on page 11-45

• “Commonly Used Properties” on page 11-46

• “Menu Bar Menu” on page 11-47

Displaying Standard Menu Bar Menus
Displaying the standard menu bar menus is optional.

If you use the standard menu bar menus, any menus you create are added to
it. If you choose not to display the standard menu bar menus, the menu bar
contains only the menus that you create. If you display no standard menus
and you create no menus, the menu bar itself is not displayed.

11-45

11 Laying Out a GUI

Use the figure MenuBar property to display or hide the MATLAB standard
menus shown in the preceding figure. Set MenuBar to figure (the default) to
display the standard menus. Set MenuBar to none to hide them.

set(fh,'MenuBar','figure'); % Display standard menu bar menus.
set(fh,'MenuBar','none'); % Hide standard menu bar menus.

In these statements, fh is the handle of the figure.

Commonly Used Properties
The most commonly used properties needed to describe a menu bar menu are
shown in the following table.

Property Values Description

Accelerator Alphabetic
character

Keyboard equivalent. Available
for menu items that do not have
submenus.

Checked off, on. Default is
off.

Menu check indicator

Enable on, off. Default is
on.

Controls whether a menu item
can be selected. When set to
off, the menu label appears
dimmed.

HandleVisibility on, off. Default is
on.

Determines if an object’s handle
is visible in its parent’s list
of children. For menus, set
HandleVisibility to off to
protect menus from operations
not intended for them.

11-46

Creating Menus

Property Values Description

Label String Menu label.

To display the & character in a
label, use two & characters in
the string.

The words remove, default,
and factory (case sensitive) are
reserved. To use one of these
as a label, prepend a backslash
(\) to the string. For example,
\remove yields remove.

Position Scalar. Default is 1. Position of a menu item in the
menu.

Separator off, on. Default is
off.

Separator line mode

For a complete list of properties and for more information about the properties
listed in the table, see Uimenu Properties in the MATLAB Function Reference
documentation. Properties needed to control GUI behavior are discussed in
Chapter 12, “Programming the GUI”.

Menu Bar Menu
The following statements create a menu bar menu with two menu items.

mh = uimenu(fh,'Label','My menu');
eh1 = uimenu(mh,'Label','Item 1');
eh2 = uimenu(mh,'Label','Item 2','Checked','on');

fh is the handle of the parent figure.

mh is the handle of the parent menu.

The Label property specifies the text that appears in the menu.

The Checked property specifies that this item is displayed with a check next
to it when the menu is created.

11-47

11 Laying Out a GUI

If your GUI displays the standard menu bar, the new menu is added to it.

If your GUI does not display the standard menu bar, MATLAB creates a menu
bar if none exists and then adds the menu to it.

The following statement adds a separator line preceding the second menu
item.

set(eh2,'Separator','on');

The following statements add two menu subitems to Item 1, assign each
subitem a keyboard accelerator, and disable the first subitem.

seh1 = uimenu(eh1,'Label','Choice 1','Accelerator','C',...
'Enable','off');

seh2 = uimenu(eh1,'Label','Choice 2','Accelerator','H');

11-48

Creating Menus

The Accelerator property adds keyboard accelerators to the menu items.
Some accelerators may be used for other purposes on your system and other
actions may result.

The Enable property disables the first subitem Choice 1 so a user cannot
select it when the menu is first created. The item appears dimmed.

Note After you have created all menu items, set their HandleVisibility
properties off by executing the following statements:

menuhandles = findall(figurehandle,'type','uimenu');
set(menuhandles,'HandleVisibility','off')

See “Programming Menu Items” on page 12-28 for information about
programming menu items.

Adding Context Menus
Context menus appear when the user right-clicks on a figure or GUI
component. Follow these steps to add a context menu to your GUI:

1 Create the context menu object using the uicontextmenu function.

2 Add menu items to the context menu using the uimenu function.

3 Associate the context menu with a graphics object using the object’s
UIContextMenu property.

Subsequent topics describe commonly used context menu properties and
explain each of these steps:

11-49

11 Laying Out a GUI

• “Commonly Used Properties” on page 11-50

• “Creating the Context Menu Object” on page 11-51

• “Adding Menu Items to the Context Menu” on page 11-52

• “Associating the Context Menu with Graphics Objects” on page 11-53

• “Forcing Display of the Context Menu” on page 11-54

Commonly Used Properties
The most commonly used properties needed to describe a context menu object
are shown in the following table. These properties apply only to the menu
object and not to the individual menu items.

Property Values Description

HandleVisibility on, off. Default is
on.

Determines if an object’s handle is visible in
its parent’s list of children. For menus, set
HandleVisibility to off to protect menus
from operations not intended for them.

Parent Figure handle Handle of the context menu’s parent figure.

Position 2-element vector:
[distance from
left, distance from
bottom]. Default is
[0 0].

Distances from the bottom left corner of the
parent figure to the top left corner of the
context menu. This property is used only when
you programmatically set the context menu
Visible property to on.

Visible off, on. Default is
off

• Indicates whether the context menu is
currently displayed. While the context menu
is displayed, the property value is on; when
the context menu is not displayed, its value
is off.

• Setting the value to on forces the posting of
the context menu. Setting to off forces the
context menu to be removed. The Position
property determines the location where the
context menu is displayed.

11-50

Creating Menus

For a complete list of properties and for more information about the properties
listed in the table, see the Uicontextmenu Properties reference page in the
MATLAB Function Reference documentation. Properties needed to control
GUI behavior are discussed in Chapter 12, “Programming the GUI”.

Creating the Context Menu Object
Use the uicontextmenu function to create a context menu object. The syntax
is

handle = uicontextmenu('PropertyName',PropertyValue,...)

The parent of a context menu must always be a figure. Use the context menu
Parent property to specify its parent. If you do not specify Parent, the parent
is the current figure as specified by the root CurrentFigure property.

The following code creates a figure and a context menu whose parent is the
figure.

fh = figure('Position',[300 300 400 225]);
cmenu = uicontextmenu('Parent',fh,'Position',[10 215]);

At this point, the figure is visible, but not the menu.

11-51

11 Laying Out a GUI

Note “Forcing Display of the Context Menu” on page 11-54 explains the use
of the Position property.

Adding Menu Items to the Context Menu
Use the uimenu function to add items to the context menu. The items appear
on the menu in the order in which you add them. The following code adds
three items to the context menu created above.

mh1 = uimenu(cmenu,'Label','Item 1');
mh2 = uimenu(cmenu,'Label','Item 2');
mh3 = uimenu(cmenu,'Label','Item 3');

If you could see the context menu, it would look like this:

You can use any applicable Uimenu Properties such as Checked or Separator
when you define context menu items. See the uimenu reference page and
“Adding Menu Bar Menus” on page 11-45 for information about using uimenu
to create menu items. Note that context menus do not have an Accelerator
property.

Note After you have created the context menu and all its items, set their
HandleVisibility properties to off by executing the following statements:

cmenuhandles = findall(figurehandle,'type','uicontextmenu');
set(cmenuhandles,'HandleVisibility','off')
menuitemhandles = findall(cmenuhandles,'type','uimenu');
set(menuitemhandles,'HandleVisibility','off')

11-52

Creating Menus

Associating the Context Menu with Graphics Objects
You can associate a context menu with the figure itself and with all
components that have a UIContextMenu property. This includes axes, panel,
button group, all user interface controls (uicontrols).

The following code adds a panel and an axes to the figure. The panel contains
a single push button.

ph = uipanel('Parent',fh,'Units','pixels',...
'Position',[20 40 150 150]);

bh1 = uicontrol(ph,'String','Button 1',...
'Position',[20 20 60 40]);

ah = axes('Parent',fh,'Units','pixels',...
'Position',[220 40 150 150]);

This code associates the context menu with the figure and with the axes by
setting the UIContextMenu property of the figure and the axes to the handle
cmenu of the context menu.

set(fh,'UIContextMenu',cmenu); % Figure
set(ah,'UIContextMenu',cmenu); % Axes

11-53

11 Laying Out a GUI

Right-click on the figure or on the axes. The context menu appears with its
upper-left corner at the location you clicked. Right-click on the panel or its
push button. The context menu does not appear.

Forcing Display of the Context Menu
If you set the context menu Visible property on, the context menu is
displayed at the location specified by the Position property, without the user
taking any action. In this example, the context menu Position property is
[10 215].

set(cmenu,'Visible','on');

11-54

Creating Menus

The context menu is displayed 10 pixels from the left of the figure and 215
pixels from the bottom.

If you set the context menu Visible property to off, or if the user clicks the
GUI outside the context menu, the context menu disappears.

11-55

11 Laying Out a GUI

Creating Toolbars

In this section...

“Using the uitoolbar Function” on page 11-56

“Commonly Used Properties” on page 11-56

“Toolbars” on page 11-57

“Displaying and Modifying the Standard Toolbar” on page 11-60

Using the uitoolbar Function
Use the uitoolbar function to add a custom toolbar to your GUI. Use the
uipushtool and uitoggletool functions to add push tools and toggle tools
to a toolbar. A push tool functions as a push button. A toggle tool functions
as a toggle button. You can add push tools and toggle tools to the standard
toolbar or to a custom toolbar.

Syntaxes for the uitoolbar, uipushtool, and uitoggletool functions include

tbh = uitoolbar(h,'PropertyName',PropertyValue,...)
pth = uipushtool(h,'PropertyName',PropertyValue,...)
tth = uitoggletool(h,'PropertyName',PropertyValue,...)

where tbh, pth, and tth are the handles, respectively, of the resulting toolbar,
push tool, and toggle tool. See the uitoolbar, uipushtool, and uitoggletool
reference pages for other valid syntaxes.

Subsequent topics describe commonly used properties of toolbars and toolbar
tools, offer a simple example, and discuss use of the MATLAB standard
toolbar:

Commonly Used Properties
The most commonly used properties needed to describe a toolbar and its tools
are shown in the following table.

11-56

Creating Toolbars

Property Values Description

CData 3-D array of values
between 0.0 and 1.0

n-by-m-by-3 array of RGB
values that defines a truecolor
image displayed on either a
push button or toggle button.

HandleVisibility on, off. Default is
on.

Determines if an object’s
handle is visible in its
parent’s list of children. For
toolbars and their tools, set
HandleVisibility to off to
protect them from operations
not intended for them.

Separator off, on. Default is
off.

Draws a dividing line to left of
the push tool or toggle tool

State off, on. Default is
off.

Toggle tool state. on is the
down, or depressed, position.
off is the up, or raised,
position.

TooltipString String Text of the tooltip associated
with the push tool or toggle
tool.

For a complete list of properties and for more information about the properties
listed in the table, see the Uitoolbar Properties, Uipushtool Properties, and
Uitoggletool Properties reference pages in the MATLAB Function Reference
documentation. Properties needed to control GUI behavior are discussed in
Chapter 12, “Programming the GUI”.

Toolbars
The following statements add a toolbar to a figure, and then add a push tool
and a toggle tool to the toolbar. By default, the tools are added to the toolbar,
from left to right, in the order they are created.

% Create the toolbar
th = uitoolbar(fh);

11-57

11 Laying Out a GUI

% Add a push tool to the toolbar
a = [.20:.05:0.95]
img1(:,:,1) = repmat(a,16,1)'
img1(:,:,2) = repmat(a,16,1);
img1(:,:,3) = repmat(flipdim(a,2),16,1);
pth = uipushtool(th,'CData',img1,...

'TooltipString','My push tool',...
'HandleVisibility','off')

% Add a toggle tool to the toolbar
img2 = rand(16,16,3);
tth = uitoggletool(th,'CData',img2,'Separator','on',...

'TooltipString','Your toggle tool',...
'HandleVisibility','off')

fh is the handle of the parent figure.

th is the handle of the parent toolbar.

CData is a 16-by-16-by-3 array of values between 0 and 1. It defines the
truecolor image that is displayed on the tool. If your image is larger than 16
pixels in either dimension, it may be clipped or cause other undesirable effects.
If the array is clipped, only the center 16-by-16 part of the array is used.

Note Create your own icon with the icon editor described in “Icon Editor” on
page 15-29. See the ind2rgb reference page for information on converting
a matrix X and corresponding colormap, i.e., an (X, MAP) image, to RGB
(truecolor) format.

11-58

Creating Toolbars

TooltipString specifies the tooltips for the push tool and the toggle tool as
My push tool and Your toggle tool, respectively.

In this example, setting the toggle tool Separator property to on creates a
dividing line to the left of the toggle tool.

You can change the order of the tools by modifying the child vector of the
parent toolbar. For this example, execute the following code to reverse the
order of the tools.

oldOrder = allchild(th);
newOrder = flipud(oldOrder);
set(th,'Children',newOrder);

This code uses flipud because the Children property is a column vector.

Use the delete function to remove a tool from the toolbar. The following
statement removes the toggle tool from the toolbar. The toggle tool handle
is tth.

delete(tth)

If necessary, you can use the findall function to determine the handles of the
tools on a particular toolbar.

11-59

11 Laying Out a GUI

Note After you have created a toolbar and its tools, set their
HandleVisibility properties off by executing statements similar to the
following:

set(toolbarhandle,'HandleVisibility','off')
toolhandles = get(toolbarhandle,'Children');
set(toolhandles,'HandleVisibility','off')

Displaying and Modifying the Standard Toolbar
You can choose whether or not to display the MATLAB standard toolbar on
your GUI. You can also add or delete tools from the standard toolbar.

Displaying the Standard Toolbar
Use the figure Toolbar property to display or hide the MATLAB standard
toolbar. Set Toolbar to figure to display the standard toolbar. Set Toolbar
to none to hide it.

set(fh,'Toolbar','figure'); % Display the standard toolbar
set(fh,'Toolbar','none'); % Hide the standard toolbar

In these statements, fh is the handle of the figure.

The default figure Toolbar setting is auto. This setting displays the figure
toolbar, but removes it if you add a user interface control (uicontrol) to the
figure.

11-60

Creating Toolbars

Modifying the Standard Toolbar
Once you have the handle of the standard toolbar, you can add tools, delete
tools, and change the order of the tools.

Add a tool the same way you would add it to a custom toolbar. The following
code retrieves the handle of the MATLAB standard toolbar and adds to the
toolbar a toggle tool similar to the one defined in “Toolbars” on page 11-57. fh
is the handle of the figure.

tbh = findall(fh,'Type','uitoolbar');
tth = uitoggletool(tbh,'CData',rand(20,20,3),...

'Separator','on',...
'HandleVisibility','off');

To remove a tool from the standard toolbar, determine the handle of the tool
to be removed, and then use the delete function to remove it. The following
code deletes the toggle tool that was added to the standard toolbar above.

delete(tth)

If necessary, you can use the findall function to determine the handles of the
tools on the standard toolbar.

11-61

11 Laying Out a GUI

Designing for Cross-Platform Compatibility

In this section...

“Default System Font” on page 11-62

“Standard Background Color” on page 11-63

“Cross-Platform Compatible Units” on page 11-64

Default System Font
By default, user interface controls (uicontrols) use the default font for the
platform on which they are running. For example, when displaying your GUI
on PCs, user interface controls use MS San Serif. When your GUI runs on
a different platform, they use that computer’s default font. This provides a
consistent look with respect to your GUI and other application GUIs on the
same platform.

If you have set the FontName property to a named font and want to return
to the default value, you can set the property to the string default. This
ensures that MATLAB uses the system default at run-time.

You can use the set command to set this property. For example, if there is a
push button with handle pbh1 in your GUI, then the statement

set(pbh1,'FontName','default')

sets the FontName property to use the system default.

Specifying a Fixed-Width Font
If you want to use a fixed-width font for a user interface control, set its
FontName property to the string fixedwidth. This special identifier ensures
that your GUI uses the standard fixed-width font for the target platform.

You can find the name of the fixed-width font that is used on a given platform
by querying the root FixedWidthFontName property.

get(0,'FixedWidthFontName')

11-62

Designing for Cross-Platform Compatibility

Using a Specific Font Name
You can specify an actual font name (such as Times or Courier) for the
FontName property. However, doing so may cause your GUI to appear
differently than you intended when run on a different computer. If the target
computer does not have the specified font, it substitutes another font that
may not look good in your GUI or may not be the standard font used for GUIs
on that system. Also, different versions of the same named font may have
different size requirements for a given set of characters.

Standard Background Color
MATLAB uses the standard system background color of the system on which
the GUI is running as the default component background color. This color
varies on different computer systems, e.g., the standard shade of gray on
the PC differs from that on UNIX, and may not match the default GUI
background color.

You can make the GUI background color match the default component
background color. The following statements retrieve the default component
background color and assign it to the figure.

defaultBackground = get(0,'defaultUicontrolBackgroundColor');
set(figurehandle,'Color',defaultBackground)

The figure Color property specifies the figure’s background color.

11-63

11 Laying Out a GUI

The following figures illustrate the results with and without system color
matching.

Cross-Platform Compatible Units
Cross-platform compatible GUIs should look correct on computers having
different screen sizes and resolutions. Since the size of a pixel can vary on
different computer displays, using the default figure Units of pixels does not
produce a GUI that looks the same on all platforms. Setting the figure and
components Units properties appropriately can help to determine how well
the GUI transports to different platforms.

Units and Resize Behavior
The choice of units is also tied to the GUI’s resize behavior. The figure Resize
and ResizeFcn properties control the resize behavior of your GUI.

Resize determines if you can resize the figure window with the mouse. The
on setting means you can resize the window, off means you cannot. When you
set Resize to off, the figure window does not display any resizing controls
to indicate that it cannot be resized.

11-64

Designing for Cross-Platform Compatibility

ResizeFcn enables you to customize the GUI’s resize behavior and is valid
only if you set Resize to on. ResizeFcn is the handle of a user-written
callback that is executed when a user resizes the GUI. It controls the resizing
of all components in the GUI.

The following table shows appropriate Units settings based on the resize
behavior of your GUI. These settings enable your GUI to automatically adjust
the size and relative spacing of components as the GUI displays on different
computers and when the GUI is resized.

Component Default Units
Resize = on
ResizeFcn = [] Resize = off

Figure pixels characters characters

User interface controls
(uicontrol) such
as push buttons,
sliders, and edit text
components

pixels normalized characters

Axes normalized normalized characters

Panel normalized normalized characters

Button group normalized normalized characters

Note The default settings shown in the table above are not the same as the
GUIDE default settings. GUIDE default settings depend on the GUIDE
Resize behavior option and are the same as those shown in the last two
columns of the table.

About Some Units Settings

Characters. Character units are defined by characters from the default
system font. The width of a character unit equals the width of the letter x in
the system font. The height of a character unit is the distance between the
baselines of two lines of text. Note that character units are not square.

11-65

11 Laying Out a GUI

Normalized. Normalized units represent a percentage of the size of the
parent. The value of normalized units lies between 0 and 1. For example, if
a panel contains a push button and the button units setting is normalized,
then the push button Position setting [.2 .2 .6 .25] means that the left side
of the push button is 20 percent of the panel width from the left side of the
panel; the bottom of the button is 20 percent of the panel height from the
bottom of the panel; the button itself is 60 percent of the width of the panel
and 25 percent of its height.

Using Familiar Units of Measure. At times, it may be convenient to use a
more familiar unit of measure, e.g., inches or centimeters, when you are laying
out the GUI. However, to preserve the look of your GUI on different computers,
remember to change the figure Units property back to characters, and
the components’ Units properties to characters (nonresizable GUIs) or
normalized (resizable GUIs) before you save the M-file.

11-66

12

Programming the GUI

Introduction (p. 12-2) Reviews file organization for a
typical GUI M-file and provides
links to related functions and to
information about nested functions.

Initializing the GUI (p. 12-4) Explains different tasks that you
might perform to initialize the GUI.

Callbacks: An Overview (p. 12-9) Introduces the functions, referred to
as callbacks, that you use to program
GUI behavior, and tells you how to
associate callbacks with components.

Examples: Programming GUI
Components (p. 12-15)

Provides a brief example for
programming each kind of
component.

12 Programming the GUI

Introduction
After you have laid out your GUI, you need to program its behavior. This
chapter addresses the programming of GUIs created programmatically.
Specifically, it discusses data creation, GUI initialization, and the use of
callbacks to control GUI behavior.

The following ordered list shows these topics within the organization of the
typical GUI M-file.

1 Comments displayed in response to the MATLAB help command.

2 Initialization tasks such as data creation and any processing that is needed
to construct the components. See “Initializing the GUI” on page 12-4 for
information.

3 Construction of figure and components. See Chapter 11, “Laying Out a
GUI” for information.

4 Initialization tasks that require the components to exist, and output return.
See “Initializing the GUI” on page 12-4 for information.

5 Callbacks for the components. Callbacks are the routines that execute in
response to user-generated events such as mouse clicks and key strokes.
See “Callbacks: An Overview” on page 12-9 and “Examples: Programming
GUI Components” on page 12-15 for information.

6 Utility functions.

Discussions in this chapter assume the use of nested functions. For
information about using nested functions, see “Nested Functions” in the
MATLAB Programming documentation.

See “Functions — By Category” in the MATLAB Function Reference
documentation for a list of functions that are provided for GUI creation.

12-2

Introduction

Note MATLAB provides a selection of standard dialog boxes that you can
create with a single function call. For information about these dialog boxes
and the functions used to create them, see “Predefined Dialog Boxes” in the
MATLAB Function Reference documentation.

12-3

12 Programming the GUI

Initializing the GUI
Many kinds of tasks can be thought of as initialization tasks. This is a
sampling of some of them:

• Define variables for supporting input and output arguments. See
“Declaring Variables for Input and Output Arguments” on page 12-5.

• Define default values for input and output arguments.

• Define custom property values used for constructing the components. See
“Defining Custom Property/Value Pairs” on page 12-5.

• Process command line input arguments.

• Create variables and data to be used by functions that are nested below the
initialization section of the M-file. See “Nested Functions” in the MATLAB
Programming documentation.

• Define variables for data to be shared between GUIs.

• Return user output if it is requested.

• Update or initialize components.

• Make changes needed to refine the look and feel of the GUI.

• Make changes needed for cross-platform compatibility. See “Designing for
Cross-Platform Compatibility” on page 11-62.

• Make the GUI invisible while the components are being created and
initialized. See “Making the Figure Invisible” on page 12-6.

• Make the GUI visible when you are ready for the user to see it.

Group these tasks together rather than scattering them throughout the
code. If an initialization task is long or complex, consider creating a utility
function to do the work.

Typically, some initialization tasks appear in the M-file before the components
are constructed. Others appear after the components are constructed.
Initialization tasks that require the components must appear following their
construction.

12-4

Initializing the GUI

Examples
These are some initialization examples taken from the examples discussed in
Chapter 15, “Examples of GUIs Created Programmatically”. If MATLAB is
running on your system, you can use these links to see the complete M-files:

• Color Palette

• Icon Editor

Declaring Variables for Input and Output Arguments
These are typical declarations for input and output arguments. They are
taken from example “Icon Editor” on page 15-29.

mInputArgs = varargin; % Command line arguments when invoking
% the GUI

mOutputArgs = {}; % Variable for storing output when GUI
% returns

See the varargin reference page and the Icon Editor M-file for more
information.

Defining Custom Property/Value Pairs
The example “Icon Editor” on page 15-29 defines property value pairs to be
used as input arguments.

The example defines the properties in a cell array, mPropertyDefs, and then
initializes the properties.

mPropertyDefs = {...

'iconwidth', @localValidateInput, 'mIconWidth';

'iconheight', @localValidateInput, 'mIconHeight';

'iconfile', @localValidateInput, 'mIconFile'};

mIconWidth = 16; % Use input property 'iconwidth' to initialize

mIconHeight = 16; % Use input property 'iconheight' to initialize

mIconFile = fullfile(matlabroot,'toolbox/matlab/icons/');

% Use input property 'iconfile' to initialize

12-5

12 Programming the GUI

Each row of the cell array defines one property. It specifies, in order, the name
of the property, the routine that is called to validate the input, and the name
of the variable that holds the property value.

The fullfile function builds a full filename from parts.

The following statements each start the Icon Editor. The first one could be
used to create a new icon. The second one could be used to edit an existing
icon file.

cdata = iconEditor('iconwidth',16,'iconheight',25)
cdata = iconEditor('iconfile','eraser.gif');

iconEditor calls a routine, processUserIputs, during the initialization to

• Identify each property by matching it to the first column of the cell array

• Call the routine named in the second column to validate the input

• Assign the value to the variable named in the third column

See the complete Icon Editor M-file for more information.

Making the Figure Invisible
When you create the GUI figure, make it invisible so that you can display it
for the user only when it is complete. Making it invisible during creation
also enhances performance.

To make the GUI invisible, set the figure Visible property to off. This
makes the entire figure window invisible. The statement that creates the
figure might look like this:

hMainFigure = figure(...
'Units','characters',...
'MenuBar','none',...
'Toolbar','none',...
'Position',[71.8 34.7 106 36.15],...
'Visible','off');

12-6

Initializing the GUI

Just before returning to the caller, you can make the figure visible with a
statement like the following:

set(hMainFigure,'Visible','on')

Most components have Visible properties. You can also use these properties
to make individual components invisible.

Returning Output to the User
If your GUI function provides for an argument to the left of the equal sign, and
the user specifies such an argument, then you want to return the expected
output. The code that provides this output usually appears just before the
GUI returns.

In the example shown here, taken from the Icon Editor example M-file,

1 A call to uiwait blocks execution until uiresume is called or the current
figure is deleted.

2 While execution is blocked, the GUI user creates the desired icon.

3 When the user signals completion of the icon by clicking OK, the routine
that services the OK push button calls uiresume and control returns to the
statement following the call to uiwait.

4 The GUI then returns the completed icon to the user as output of the GUI.

% Make the GUI blocking.
uiwait(hMainFigure);

% Return the edited icon CData if it is requested.
mOutputArgs{1} = mIconCData;
if nargout>0

[varargout{1:nargout}] = mOutputArgs{:};
end

mIconData contains the icon that the user created or edited. mOutputArgs is a
cell array defined to hold the output arguments. nargout indicates how many
output arguments the user has supplied. varargout contains the optional

12-7

12 Programming the GUI

output arguments returned by the GUI. See the complete Icon Editor M-file
for more information.

12-8

Callbacks: An Overview

Callbacks: An Overview

In this section...

“What Is a Callback?” on page 12-9

“Kinds of Callbacks” on page 12-10

“Associating Callbacks with Components” on page 12-12

What Is a Callback?
The callback functions you provide control how the GUI responds to events
such as button clicks, slider movement, menu item selection, or the creation
and deletion of components. There is a set of callbacks for each component
and for the GUI figure itself.

The callback routines usually appear in the M-file following the initialization
code and the creation of the components. See “File Organization” on page
11-4 for more information.

A callback is a function that you write and associate with a specific component
in the GUI or with the GUI figure itself. The callbacks control GUI or
component behavior by performing some action in response to an event for its
component. The event can be a mouse click on a push button, menu selection,
key press, etc. This kind of programming is often called event-driven
programming.

When an event occurs for a component, MATLAB invokes the component
callback that is associated with that event. As an example, suppose a GUI has
a push button that triggers the plotting of some data. When the user clicks the
button, MATLAB calls the callback you associated with clicking that button,
and then the callback, which you have programmed, gets the data and plots it.

A component can be any control device such as an axes, push button, list box,
or slider. For purposes of programming, it can also be a menu, toolbar tool, or
a container such as a panel or button group. See “Available Components” on
page 11-10 for a list and descriptions of components.

12-9

12 Programming the GUI

Kinds of Callbacks
The GUI figure and each type of component has specific kinds of callbacks
with which you can associate it. The callbacks that are available for each
component are defined as properties of that component. For example, a push
button has five callback properties: ButtonDownFcn, Callback, CreateFcn,
DeleteFcn, and KeyPressFcn. A panel has four callback properties:
ButtonDownFcn, CreateFcn, DeleteFcn, and ResizeFcn. You can, but are
not required to, create a callback function for each of these properties. The
GUI itself, which is a figure, also has certain kinds of callbacks with which
it can be associated.

Each kind of callback has a triggering mechanism or event that causes it to
be called. The following table lists the callback properties that are available,
their triggering events, and the components to which they apply.

Callback Property Triggering Event Components

ButtonDownFcn Executes when the user
presses a mouse button
while the pointer is on
or within five pixels of a
component or figure.

Axes, figure,
button group,
panel, user
interface controls

Callback Control action. Executes,
for example, when a user
clicks a push button or
selects a menu item.

Context menu,
menu user
interface controls

ClickedCallback Control action. Executes
when the push tool or
toggle tool is clicked. For
the toggle tool, this is
independent of its state.

Push tool, toggle
tool

CloseRequestFcn Executes when the figure
closes.

Figure

12-10

Callbacks: An Overview

Callback Property Triggering Event Components

CreateFcn Initializes the component
when it is created.
It executes after the
component or figure is
created, but before it is
displayed.

Axes, button
group, context
menu, figure,
menu, panel,
push tool, toggle
tool, toolbar, user
interface controls

DeleteFcn Performs cleanup
operations just before
the component or figure is
destroyed.

Axes, button
group, context
menu, figure,
menu, panel,
push tool, toggle
tool, toolbar, user
interface controls

KeyPressFcn Executes when the user
presses a keyboard key and
the callback’s component or
figure has focus.

Figure, user
interface controls

KeyReleaseFcn Executes when the user
releases a keyboard key
and the figure has focus.

Figure

OffCallback Control action. Executes
when the state of a toggle
tool is changed to off.

Toggle tool

OnCallback Control action. Executes
when the state of a toggle
tool is changed to on.

Toggle tool

ResizeFcn Executes when a user
resizes a panel, button
group, or figure whose
figure Resize property is
set to On.

Figure, button
group, panel

12-11

12 Programming the GUI

Callback Property Triggering Event Components

SelectionChangeFcn Executes when a user
selects a different radio
button or toggle button in a
button group component.

Button group

WindowButtonDownFcn Executes when you press
a mouse button while the
pointer is in the figure
window.

Figure

WindowButtonMotionFcn Executes when you move
the pointer within the
figure window.

Figure

WindowButtonUpFcn Executes when you release
a mouse button.

Figure

WindowScrollWheelFcn Executes when the mouse
wheel is scrolled while the
figure has focus.

Figure

Note User interface controls include push buttons, sliders, radio buttons,
check boxes, editable text boxes, static text boxes, list boxes, and toggle
buttons. They are sometimes referred to as uicontrols.

Check the properties reference page for your component, e.g., Uicontrol
Properties, to get specific information for a given callback property.

Associating Callbacks with Components
A GUI can have many components and each component’s properties provide a
way of specifying which callback should run in response to a particular event
for that component. The callback that runs when the user clicks a Yes button
is not the one that runs for the No button. Each menu item also performs a
different function and needs its own callback.

12-12

Callbacks: An Overview

You associate a callback with a specific component by setting the value of the
appropriate component callback property to the callback. This is usually done
in the component definition.

You can specify a component callback property value as any of the following:

• String that is a valid MATLAB expression or the name of an M-file.

• Cell array of strings. This example uses a cell array of strings to specify
pushbutton_callback as the callback routine to be executed when a user
clicks Button 1.

pbh = uicontrol(fh,'Style','pushbutton','String','Button 1',...
'Position',[50 20 60 40],...
'Callback',{'pushbutton_callback',width,...});

Callback is the name of the callback property. The first element of the cell
array is the name of the callback routine, subsequent elements are input
arguments to the callback.

The corresponding function definition would look like this:

function pushbutton_callback(width,...)

See “Defining Callbacks as a Cell Array of Strings — Special Case” in the
MATLAB Graphics documentation for more information.

• Function handle or cell array containing a function handle and
additional arguments. This example uses a function handle to specify
pushbutton_callback as the callback routine to be executed when a user
clicks Button 1.

pbh = uicontrol(fh,'Style','pushbutton','String','Button 1',...
'Position',[50 20 60 40],...
'Callback',{@pushbutton_callback,width,...});

Callback is the name of the callback property. The first element of the cell
array is the handle of the callback routine, subsequent elements are input
arguments to the callback.

Because the callback is specified as a handle, MATLAB automatically
passes two additional arguments, the handle of the component for which
the event was triggered and eventdata, as the first two arguments of the

12-13

12 Programming the GUI

callback. The second element of the cell array, width in the example above,
becomes the third argument of the callback.

The corresponding function definition would contain these two additional
arguments:

function pushbutton_callback(hObject,eventdata,width,...)

See “Introduction” in the MATLAB Graphics documentation for more
information.

When an appropriate event occurs, it triggers execution of the MATLAB
expression, the script or function contained in the M-file, the specified
function, or the function associated with the function handle. The same is
true for menus, toolbar tools, and for the figure itself.

See “Kinds of Callbacks” on page 12-10 for a list of the available callbacks for
each component. See the component property pages for information about
specific callback properties.

12-14

Examples: Programming GUI Components

Examples: Programming GUI Components

In this section...

“Programming User Interface Controls” on page 12-15

“Programming Panels and Button Groups” on page 12-23

“Programming Axes” on page 12-25

“Programming ActiveX Controls” on page 12-28

“Programming Menu Items” on page 12-28

“Programming Toolbar Tools” on page 12-31

Programming User Interface Controls
The examples assume that callback properties are specified using function
handles, enabling MATLAB to pass arguments hObject, which is the handle
of the component for which the event was triggered, and eventdata. See
“Associating Callbacks with Components” on page 12-12 for more information.

• “Check Box” on page 12-16

• “Edit Text” on page 12-16

• “List Box” on page 12-18

• “Pop-Up Menu” on page 12-19

• “Push Button” on page 12-20

• “Radio Button” on page 12-21

• “Slider” on page 12-21

• “Toggle Button” on page 12-22

Note See “Available Components” on page 11-10 for descriptions of these
components. See “Adding User Interface Controls” on page 11-13 for
information about adding these components to your GUI.

12-15

12 Programming the GUI

Check Box
You can determine the current state of a check box from within any of its
callbacks by querying the state of its Value property, as illustrated in the
following example:

function checkbox1_Callback(hObject,eventdata)
if (get(hObject,'Value') == get(hObject,'Max'))

% Checkbox is checked-take approriate action
else

% Checkbox is not checked-take approriate action
end

hObject is the handle of the component for which the event was triggered.

You can also change the state of a check box by programmatically by setting
the check box Value property to the value of the Max or Min property. For
example,

set(cbh,'Value','Max')

puts the check box with handle cbh in the checked state.

Edit Text
To obtain the string a user types in an edit box, use any of its callbacks to get
the value of the String property. This example uses the Callback callback.

function edittext1_Callback(hObject,eventdata)
user_string = get(hObject,'String');

% Proceed with callback

If the edit text Max and Min properties are set such that Max - Min > 1, the
user can enter multiple lines. For example, setting Max to 2, with the default
value of 0 for Min, enables users to enter multiple lines. If you originally
specify String as a character string, multiline user input is returned as a 2-D
character array with each row containing a line. If you originally specify
String as a cell array, multiline user input is returned as a 2-D cell array of
strings.

hObject is the handle of the component for which the event was triggered.

12-16

Examples: Programming GUI Components

Retrieving Numeric Data from an Edit Text Component. MATLAB
returns the value of the edit text String property as a character string. If
you want users to enter numeric values, you must convert the characters to
numbers. You can do this using the str2double command, which converts
strings to doubles. If the user enters nonnumeric characters, str2double
returns NaN.

You can use code similar to the following in an edit text callback. It gets
the value of the String property and converts it to a double. It then checks
whether the converted value is NaN (isnan), indicating the user entered a
nonnumeric character and displays an error dialog box (errordlg).

function edittext1_Callback(hObject,eventdata)
user_entry = str2double(get(hObject,'string'));
if isnan(user_entry)
errordlg('You must enter a numeric value','Bad Input','modal')
return

end

% Proceed with callback...

Triggering Callback Execution. If the contents of the edit text component
have been changed, clicking inside the GUI, but outside the edit text, causes
the edit text callback to execute. The user can also press Enter for an edit
text that allows only a single line of text, or Ctrl+Enter for an edit text that
allows multiple lines.

Available Keyboard Accelerators. GUI users can use the following
keyboard accelerators to modify the content of an edit text. These accelerators
are not modifiable.

• Ctrl+X – Cut

• Ctrl+C – Copy

• Ctrl+V – Paste

• Ctrl+H – Delete last character

• Ctrl+A – Select all

12-17

12 Programming the GUI

List Box
When the list box Callback callback is triggered, the list box Value property
contains the index of the selected item, where 1 corresponds to the first item
in the list. The String property contains the list as a cell array of strings.

This example retrieves the selected string. Note that it is necessary to convert
the value of the String property from a cell array to a string.

function listbox1_Callback(hObject,eventdata)
index_selected = get(hObject,'Value');
list = get(hObject,'String');
item_selected = list{index_selected}; % Convert from cell array

% to string

hObject is the handle of the component for which the event was triggered.

You can also select a list item programmatically by setting the list box Value
property to the index of the desired item. For example,

set(lbh,'Value',2)

selects the second item in the list box with handle lbh.

Triggering Callback Execution. MATLAB executes the list box Callback
callback after the mouse button is released or after certain key press events:

• The arrow keys change the Value property, trigger callback execution, and
set the figure SelectionType property to normal.

• The Enter key and space bar do not change the Value property, but trigger
callback execution and set the figure SelectionType property to open.

If the user double-clicks, the callback executes after each click. MATLAB sets
the figure SelectionType property to normal on the first click and to open on
the second click. The callback can query the figure SelectionType property
to determine if it was a single or double click.

List Box Examples. See the following examples for more information on
using list boxes:

12-18

Examples: Programming GUI Components

• “List Box Directory Reader” on page 10-9 — Shows how to creates a GUI
that displays the contents of directories in a list box and enables users to
open a variety of file types by double-clicking the filename.

• “Accessing Workspace Variables from a List Box” on page 10-16 — Shows
how to access variables in the MATLAB base workspace from a list box GUI.

Pop-Up Menu
When the pop-up menu Callback callback is triggered, the pop-up menu
Value property contains the index of the selected item, where 1 corresponds to
the first item on the menu. The String property contains the menu items as
a cell array of strings.

Note A pop-up menu is sometimes referred to as a drop-down menu or combo
box.

Using Only the Index of the Selected Menu Item. This example retrieves
only the index of the item selected. It uses a switch statement to take action
based on the value. If the contents of the pop-up menu are fixed, then you can
use this approach. Else, you can use the index to retrieve the actual string
for the selected item.

function popupmenu1_Callback(hObject,eventdata)
val = get(hObject,'Value');
switch val
case 1 % User selected the first item
case 2 % User selected the second item

% Proceed with callback...

hObject is the handle of the component for which the event was triggered.

You can also select a menu item programmatically by setting the pop-up menu
Value property to the index of the desired item. For example,

set(pmh,'Value',2)

selects the second item in the pop-up menu with handle pmh.

12-19

12 Programming the GUI

Using the Index to Determine the Selected String. This example
retrieves the actual string selected in the pop-up menu. It uses the pop-up
menu Value property to index into the list of strings. This approach may be
useful if your program dynamically loads the contents of the pop-up menu
based on user action and you need to obtain the selected string. Note that it
is necessary to convert the value returned by the String property from a
cell array to a string.

function popupmenu1_Callback(hObject,eventdata)
val = get(hObject,'Value');
string_list = get(hObject,'String');
selected_string = string_list{val}; % Convert from cell array

% to string
% Proceed with callback...

hObject is the handle of the component for which the event was triggered.

Push Button
This example contains only a push button. Clicking the button, closes the GUI.

This is the push button’s Callback callback. It displays the string Goodbye at
the command line and then closes the GUI.

function pushbutton1_Callback(hObject,eventdata)
display Goodbye
close(gcbf)

gcbf returns the handle of the figure containing the object whose callback
is executing.

12-20

Examples: Programming GUI Components

Radio Button
You can determine the current state of a radio button from within its
Callback callback by querying the state of its Value property, as illustrated
in the following example:

function radiobutton_Callback(hObject,eventdata)
if (get(hObject,'Value') == get(hObject,'Max'))
% Radio button is selected-take approriate action

else
% Radio button is not selected-take approriate action

end

Radio buttons set Value to Max when they are on (when selected) and Min
when off (not selected). hObject is the handle of the component for which the
event was triggered.

You can also change the state of a radio button programmatically by setting
the radio button Value property to the value of the Max or Min property. For
example,

set(rbh,'Value','Max')

puts the radio button with handle rbh in the selected state.

Note You can use a button group to manage exclusive selection behavior for
radio buttons. See “Button Group” on page 12-23 for more information.

Slider
You can determine the current value of a slider from within its Callback
callback by querying its Value property, as illustrated in the following
example:

function slider1_Callback(hObject,eventdata)
slider_value = get(hObject,'Value');

% Proceed with callback...

12-21

12 Programming the GUI

The Max and Min properties specify the slider’s maximum and minimum
values. The slider’s range is Max - Min. hObject is the handle of the
component for which the event was triggered.

Toggle Button
The callback for a toggle button needs to query the toggle button to determine
what state it is in. MATLAB sets the Value property equal to the Max property
when the toggle button is pressed (Max is 1 by default). It sets the Value
property equal to the Min property when the toggle button is not pressed
(Min is 0 by default).

The following code illustrates how to program the callback in the GUI M-file.

function togglebutton1_Callback(hObject,eventdata)
button_state = get(hObject,'Value');
if button_state == get(hObject,'Max')
% Toggle button is pressed-take approperiate action

...
elseif button_state == get(hObject,'Min')
% Toggle button is not pressed-take appropriate action

...
end

hObject is the handle of the component for which the event was triggered.

You can also change the state of a toggle button programmatically by setting
the toggle button Value property to the value of the Max or Min property. For
example,

set(tbh,'Value','Max')

puts the toggle button with handle tbh in the pressed state.

Note You can use a button group to manage exclusive selection behavior for
toggle buttons. See “Button Group” on page 12-23 for more information.

12-22

Examples: Programming GUI Components

Programming Panels and Button Groups
These topics provide basic code examples for panels and button group
callbacks.

The examples assume that callback properties are specified using function
handles, enabling MATLAB to pass arguments hObject, which is the handle
of the component for which the event was triggered, and eventdata. See
“Associating Callbacks with Components” on page 12-12 for more information.

• “Panel” on page 12-23

• “Button Group” on page 12-23

Panel
Panels group GUI components and can make a GUI easier to understand by
visually grouping related controls. A panel can contain panels and button
groups, as well as axes and user interface controls such as push buttons,
sliders, pop-up menus, etc. The position of each component within a panel is
interpreted relative to the lower-left corner of the panel.

Generally, if the GUI is resized, the panel and its components are also
resized. However, you can control the size and position of the panel and its
components. You can do this by setting the GUI Resize property to on and
providing a ResizeFcn callback for the panel.

Note See “Cross-Platform Compatible Units” on page 11-64 for information
about the effect of units on resize behavior.

Button Group
Button groups are like panels except that they manage exclusive selection
behavior for radio buttons and toggle buttons. If a button group contains a
set of radio buttons, toggle buttons, or both, the button group allows only one
of them to be selected. When a user clicks a button, that button is selected
and all other buttons are deselected.

12-23

12 Programming the GUI

The following figure shows a button group with two radio buttons and two
toggle buttons. Radio Button 1 is selected.

If a user clicks the other radio button or one of the toggle buttons, it becomes
selected and Radio Button 1 is deselected. The following figure shows the
result of clicking Toggle Button 2.

The button group SelectionChangeFcn callback is called whenever a selection
is made. If you have a button group that contains a set of radio buttons and
toggle buttons and you want:

• An immediate action to occur when a radio button or toggle button is
selected, you must include the code to control the radio and toggle buttons
in the button group’s SelectionChangeFcn callback function, not in the
individual toggle button Callback functions. “Color Palette” on page 15-17
provides a practical example of a SelectionChangeFcn callback.

12-24

Examples: Programming GUI Components

• Another component such as a push button to base its action on the
selection, then that component’s Callback callback can get the handle
of the selected radio button or toggle button from the button group’s
SelectedObject property.

This example of a SelectionChangeFcn callback uses the Tag property of the
selected object to choose the appropriate code to execute. The Tag property
of each component is a string that identifies that component and must be
unique in the GUI.

function uibuttongroup1_SelectionChangeFcn(hObject,eventdata)

switch get(eventdata.NewValue,'Tag') % Get Tag of selected object.

case 'radiobutton1'

% Code for when radiobutton1 is selected.

case 'radiobutton2'

% Code for when radiobutton2 is selected.

case 'togglebutton1'

% Code for when togglebutton1 is selected.

case 'togglebutton2'

% Code for when togglebutton2 is selected.

% Continue with more cases as necessary.

otherwise

% Code for when there is no match.

end

The hObject and eventdata arguments are available to the callback only
if the value of the callback property is specified as a function handle. See
theSelectionChangeFcn property on the Uibuttongroup Properties reference
page for information about eventdata. See the uibuttongroup reference page
and “Color Palette” on page 15-17 for other examples.

Programming Axes
Axes components enable your GUI to display graphics, such as graphs and
images. This topic briefly tells you how to plot to an axes in your GUI.

In most cases, you create a plot in an axes from a callback that belongs to
some other component in the GUI. For example, pressing a button might
trigger the plotting of a graph to an axes. In this case, the button’s Callback
callback contains the code that generates the plot.

12-25

12 Programming the GUI

The following example contains two axes and two push buttons. Clicking the
first button generates a contour plot in one axes and clicking the other button
generates a surf plot in the other axes. The example generates data for the
plots using the peaks function, which returns a square matrix obtained by
translating and scaling Gaussian distributions.

1 Save this code in an M-file named two_axes.m.

function two_axes
fh = figure;
bh1 = uicontrol(fh,'Position',[20 290 60 30],...

'String','Plot 1',...
'Callback',@button1_plot);

bh2 = uicontrol(fh,'Position',[20 100 60 30],...
'String','Plot 2',...
'Callback',@button2_plot);

ah1 = axes('Parent',fh,'units','pixels',...
'Position',[120 220 170 170]);

ah2 = axes('Parent',fh,'units','pixels',...
'Position',[120 30 170 170]);

%--
function button1_plot(hObject,eventdata)

contour(ah1,peaks(35));
end
%--
function button2_plot(hObject,eventdata)

surf(ah2,peaks(35));
end

end

12-26

Examples: Programming GUI Components

2 Run the GUI by typing two_axes at the command line. This is what the
example looks like before you click the push buttons.

3 Click the Plot 1 button to display the contour plot in the first axes. Click
the Plot 2 button to display the surf plot in the second axes.

12-27

12 Programming the GUI

See “GUI with Multiple Axes” on page 10-2 for a more complex example that
uses two axes.

If your GUI contains axes, you should ensure that their HandleVisibility
properties are set to callback. This allows callbacks to change the contents
of the axes and prevents command line operations from doing so. The default
is on.

For more information about:

• Properties that you can set to control many aspects of axes behavior and
appearance, see “Axes Properties” in the MATLAB Graphics documentation.

• Creating axes in a tiled pattern, see the subplot function reference page.

• Plotting in general, see “Plots and Plotting Tools” in the MATLAB Graphics
documentation.

Programming ActiveX Controls
For information about programming ActiveX controls, see the following topics
in the MATLAB External Interfaces documentation.

• “Control and Server Events”

• “Writing Event Handlers”

See “MATLAB COM Client Support” in the MATLAB External Interfaces
documentation for general information.

Programming Menu Items

• “Programming a Menu Title” on page 12-28

• “Opening a Dialog Box from a Menu Callback” on page 12-29

• “Updating a Menu Item Check” on page 12-30

Programming a Menu Title
Because clicking a menu title automatically displays the menu below it, you
may not need to program callbacks at the title level. However, the callback

12-28

Examples: Programming GUI Components

associated with a menu title can be a good place to enable or disable menu
items below it.

Consider the example illustrated in the following picture.

When a user selects Edit > Copy > to file, no Copy callback is needed to
perform the action. Only the Callback callback associated with the to file
item is required.

Suppose, however, that only certain objects can be copied to a file. You can
use the Copy item Callback callback to enable or disable the to file item,
depending on the type of object selected.

The following code disables the to file item by setting its Enable property
off. The menu item would then appear dimmed.

set(tofilehandle,'Enable','off')

Setting Enable to on, would then enable the menu item.

Opening a Dialog Box from a Menu Callback
The Callback callback for the to file menu item could contain code such as
the following to display the standard dialog box for saving files.

[file,path] = uiputfile('animinit.m','Save file name');

12-29

12 Programming the GUI

'Save file name' is the dialog box title. In the dialog box, the filename field
is set to animinit.m, and the filter set to M-files (*.m). For more information,
see the uiputfile reference page.

Note MATLAB provides a selection of standard dialog boxes that you can
create with a single function call. For information about these dialog boxes
and the functions used to create them, see “Predefined Dialog Boxes” in the
MATLAB Function Reference documentation.

Updating a Menu Item Check
A check is useful to indicate the current state of some menu items. If you set
the Checked property to on when you create the menu item, the item initially
appears checked. Each time the user selects the menu item, the callback for
that item must turn the check on or off. The following example shows you how
to do this by changing the value of the menu item’s Checked property.

function menu_copyfile(hObject,eventdata)
if strcmp(get(hObject,'Checked'),'on')

set(hObject,'Checked','off');
else

set(hObject,'Checked','on');
end

hObject is the handle of the component for which the event was triggered. Its
use here assumes the menu item’s Callback property specifies the callback
as a function handle. See “Associating Callbacks with Components” on page
12-12 for more information.

The strcmp function compares two strings and returns logical 1 (true) if the
two are identical, and logical 0 (false) otherwise.

Use of checks when the GUI is first displayed should be consistent with the
display. For example, if your GUI has an axes that is visible when a user first
opens it and the GUI has a Show axes menu item, be sure to set the menu
item’s Checked property on when you create it so that a check appears next to
the Show axes menu item initially.

12-30

Examples: Programming GUI Components

Programming Toolbar Tools

• “Push Tool” on page 12-31

• “Toggle Tool” on page 12-33

Push Tool
The push tool ClickedCallback property specifies the push tool control
action. The following example creates a push tool and programs it to open a
standard color selection dialog box. You can use the dialog box to set the
background color of the GUI.

1 Copy the following code into an M-file and save it in your current directory
or on your path as color_gui.m. Run the script by typing color_gui at
the command line.

function color_gui
fh = figure('Position',[250 250 250 150],'Toolbar','none');
th = uitoolbar('Parent',fh);
pth = uipushtool('Parent',th,'Cdata',rand(20,20,3),...

'ClickedCallback',@color_callback);
%---

function color_callback(hObject,eventdata)
color = uisetcolor(fh,'Pick a color');
end

end

12-31

12 Programming the GUI

2 Click the push tool to display the color selection dialog box and click a
color to select it.

3 Click OK on the color selection dialog box. The GUI background color
changes to the color you selected—in this case, green.

12-32

Examples: Programming GUI Components

Note Create your own icon with the icon editor described in “Icon Editor” on
page 15-29. See the ind2rgb reference page for information on converting
a matrix X and corresponding colormap, i.e., an (X, MAP) image, to RGB
(truecolor) format.

Toggle Tool
The toggle tool OnCallback and OffCallback properties specify the toggle
tool control actions that occur when the toggle tool is clicked and its State
property changes to on or off. The toggle tool ClickedCallback property
specifies a control action that takes place whenever the toggle tool is clicked,
regardless of state.

The following example uses a toggle tool to toggle a plot between surface
and mesh views of the peaks data. The example also counts the number of
times you have clicked the toggle tool.

The surf function produces a 3-D shaded surface plot. The mesh function
creates a wireframe parametric surface. peaks returns a square matrix
obtained by translating and scaling Gaussian distributions

12-33

12 Programming the GUI

1 Copy the following code into an M-file and save it in your current
directory or on your path as toggle_plots.m. Run the script by typing
toggle_plots at the command line.

function toggle_plots
counter = 0;
fh = figure('Position',[250 250 300 340],'Toolbar','none');
ah = axes('Parent',fh,'Units','pixels',...

'Position',[35 85 230 230]);
th = uitoolbar('Parent',fh);
tth = uitoggletool('Parent',th,'Cdata',rand(20,20,3),...

'OnCallback',@surf_callback,...
'OffCallback',@mesh_callback,...
'ClickedCallback',@counter_callback);

sth = uicontrol('Style','text','String','Counter: ',...
'Position',[35 20 45 20]);

cth = uicontrol('Style','text','String',num2str(counter),...
'Position',[85 20 30 20]);

%---
function counter_callback(hObject,eventdata)
counter = counter + 1;
set(cth,'String',num2str(counter))
end

%---
function surf_callback(hObject,eventdata)
surf(ah,peaks(35));
end

%---
function mesh_callback(hObject,eventdata)
mesh(ah,peaks(35));
end

end

12-34

Examples: Programming GUI Components

12-35

12 Programming the GUI

2 Click the toggle tool to display the initial plot. The counter increments to 1.

3 Continue clicking the toggle tool to toggle between surf and mesh plots of
the peaks data.

12-36

13

Managing
Application-Defined
Data

Mechanisms for Managing Data
(p. 13-2)

Describes various mechanisms for
managing application-defined data.
Explains how GUIDE uses one of
these mechanisms, GUI data.

Sharing Data Among a GUI’s
Callbacks (p. 13-9)

Shows how each mechanism for
managing data can be used to share
data among a GUI’s callbacks.

13 Managing Application-Defined Data

Mechanisms for Managing Data

In this section...

“Nested Functions” on page 13-2

“GUI Data” on page 13-2

“Application Data” on page 13-5

“UserData Property” on page 13-7

Nested Functions
Use nested function to create your GUI M-files. They enable callback
functions to share data freely without it having to be passed as arguments.

1 Construct components, define variables, and generate data in the
initialization segment of your code.

2 Nest the GUI callbacks and utility functions at a level below the
initialization.

The callbacks and utility functions automatically have access to the data and
the component handles because they are defined at a higher level.

Note For information about using nested functions, see “Nested Functions” in
the MATLAB Programming documentation.

GUI Data
Most GUIs generate or use data that is specific to the application. These
mechanisms provide a way for applications to save and retrieve data stored
with the GUI.

The GUI data and application data mechanisms are similar, but GUI data
can be simpler to use. The figure and component UserData properties can
also hold application-defined data.

13-2

Mechanisms for Managing Data

GUI data is managed using the guidata function. This function can store
a single variable as GUI data. It is also used to retrieve the value of that
variable.

• “About GUI Data” on page 13-3

• “Creating and Updating GUI Data” on page 13-3

• “Adding Fields to a GUI Data Structure” on page 13-4

Note If your M-file was originally created by GUIDE, see “Changing GUI
Data in an M-File Generated by GUIDE” on page 9-4.

About GUI Data
GUI data is always associated with the GUI figure. It is available to all
callbacks of all components of the GUI. If you specify a component handle
when you save or retrieve GUI data, MATLAB automatically associates the
data with the component’s parent figure.

GUI data can contain only one variable at any time. Writing GUI data with
a different variable overwrites the existing GUI data. For this reason, GUI
data is usually defined to be a structure to which you can add fields as you
need them.

You can access the data from within a callback routine using the component’s
handle, without having to find the figure handle. If you specify a
component’s callback properties as function handles, the component handle is
automatically passed to each callback as hObject. See “Associating Callbacks
with Components” on page 12-12 for more information.

Because there can be only one GUI data variable and it is associated with the
figure, you do not need to create and maintain a hard-coded name for the
data throughout your source code.

Creating and Updating GUI Data

1 Create a structure and add to it the fields you want. For example,

13-3

13 Managing Application-Defined Data

mydata.iteration_counter = 0;
mydata.number_errors = 0;

2 Save the structure as GUI data. MATLAB associates GUI data with
the figure, but you can use the handle of any component in the figure to
retrieve or save it.

guidata(figurehandle,mydata);

3 To change GUI data from a callback, get a copy of the structure, update the
desired field, and then save the GUI data.

mydata = guidata(hObject); % Get the GUI data.
mydata.iteration_counter = mydata.iteration_counter +1;
guidata(hObject,mydata); % Save the GUI data.

Note To use hObject, you must specify a component’s callback properties
as function handles. When you do, the component handle is automatically
passed to each callback as hObject. See “Associating Callbacks with
Components” on page 12-12 for more information.

Adding Fields to a GUI Data Structure
To add a field to a GUI data structure:

1 Get a copy of the structure with a command similar to the following
where hObject is the handle of the component for which the callback was
triggered.

mydata = guidata(hObject)

2 Assign a value to the new field. This adds the field to the structure. For
example,

mydata.iteration_state = 0;

adds the field iteration_state to the structure mydata and sets it to 0.

3 Use the following command to save the data.

13-4

Mechanisms for Managing Data

guidata(hObject,mydata)

where hObject is the handle of the component for which the callback was
triggered. MATLAB associates a new copy of the mydata structure with the
component’s parent figure.

Application Data
Application data provides a way for applications to save and retrieve data
associated with a specified object. For a GUI, this is usually the GUI figure
but can also be any component. The data is stored as name/value pairs.
Application data enables you to create what are essentially user-defined
properties for an object.

The following table summarizes the functions that provide access to
application data. For more detailed information, see the individual function
reference pages.

Functions for Managing Application Data

Function Purpose

setappdata Specify named application data for an object. The
object does not have to be a figure. You can specify
more than one named application data for an object.
However, each name must be unique for that object
and can be associated with only one value, usually
a structure.

getappdata Retrieve named application data. To retrieve
named application data, you must know the name
associated with the application data and the handle
of the object with which it is associated.

13-5

13 Managing Application-Defined Data

Functions for Managing Application Data (Continued)

Function Purpose

isappdata True if the named application data exists on the
specified object.

rmappdata Remove named application data from the specified
object.

Creating Application Data
Use the setappdata function to create application data. This example
generates a 35-by-35 matrix of normally distributed random numbers and
creates application data mydata, associated with the figure, to manage it.

matrices.rand_35 = randn(35);
setappdata(figurehandle,'mydata',matrices);

By using nested functions and creating the figure at the top level, the figure
handle is accessible to all callbacks and utility functions nested at lower
levels. For information about using nested functions, see “Nested Functions”
in the MATLAB Programming documentation.

Adding Fields to an Application Data Structure
Application data is usually defined as a structure to enable you to add fields
as necessary. This example adds a field to the application data structure
mydata created in the previous topic.

1 Use getappdata to retrieve the structure.

From the example in the previous topic, the name of the application data
structure is mydata. It is associated with the figure.

matrices = getappdata(figurehandle,'mydata');

13-6

Mechanisms for Managing Data

2 Create a new field and assign it a value. For example

matrices.randn_50 = randn(50);

adds the field randn_50 to the matrices structure and sets it to a 50-by-50
matrix of normally distributed random numbers.

3 Use setappdata to save the data. This example uses setappdata to save
the matrices structure as the application data structure mydata.

setappdata(figurehandle,'mydata',matrices);

UserData Property
Each GUI component and the figure itself has a UserData property. You
can assign any valid MATLAB value to a UserData property. To retrieve
the data, a callback must know the handle of the component with which the
data is associated.

1 In this example, an edit text component stores the user-entered string in
its UserData property.

function edittext1_callback(hObject,eventdata)
mystring = get(hObject,'String');
set(hObject,'UserData',mystring);

2 A push button retrieves the string from the edit text component UserData
property.

function pushbutton1_callback(hObject,eventdata)
string = get(edittexthandle,'UserData');

Specify UserData as a structure if you want to store multiple fields.

13-7

13 Managing Application-Defined Data

Note By using nested functions and creating the figure and the components
at the top level, their handles are accessible to all callbacks and utility
functions nested at lower levels. For information about using nested functions,
see “Nested Functions” in the MATLAB Programming documentation. To
use hObject, you must specify a component’s callback properties as function
handles. When you do, the component handle is automatically passed to each
callback as hObject. See “Associating Callbacks with Components” on page
12-12 for more information.

13-8

Sharing Data Among a GUI’s Callbacks

Sharing Data Among a GUI’s Callbacks

In this section...

“Nested Functions” on page 13-9

“GUI Data” on page 13-13

“Application Data” on page 13-16

“UserData Property” on page 13-18

See “Mechanisms for Managing Data” on page 13-2 for general information
about these methods.

Nested Functions
You can use GUI data, application data, and the UserData property to share
data among a GUI’s callbacks. In many cases nested functions enables you to
share data among callbacks without using the other data forms.

Nested Functions Example: Passing Data Between Components
This example uses a GUI that contains a slider and an edit text component as
shown in the following figure. A static text component instructs the user to
enter a value in the edit text or click the slider. The example initializes and
maintains an error counter as well as the old and new values of the slider
in a nested functions environment.

13-9

13 Managing Application-Defined Data

The GUI behavior is as follows:

• When a user moves the slider, the edit text component displays the slider’s
current value and prints a message to the command line, similar to the
following, indicating how many units the slider moved.

You moved the slider 25 units.

• When a user types a value into the edit text component and then presses
Enter or clicks outside the component, the slider updates to this value an d
the edit text component prints a message to the command line indicating
how many units the slider moved.

• If a user enters a value in the edit text component that is out of range for
the slider—that is, a value that is not between the slider’s Min and Max
properties—the application returns a message in the edit text indicating
how many times the user has entered an erroneous value.

The following code constructs the components, initializes the error counter
and the previous and new slider values in the initialization section of the
function, and uses two callbacks to implement the interchange between the
slider and the edit text component. Copy this code into an M-file and save it
in your current directory or on your path as slider_gui.m. Run the script by
typing slider_gui at the command line.

function slider_gui
fh = figure('Position',[250 250 350 350]);
sh = uicontrol(fh,'Style','slider',...

'Max',100,'Min',0,'Value',25,...
'SliderStep',[0.05 0.2],...
'Position',[300 25 20 300],...
'Callback',@slider_callback);

eth = uicontrol(fh,'Style','edit',...
'String',num2str(get(sh,'Value')),...
'Position',[30 175 240 20],...

13-10

Sharing Data Among a GUI’s Callbacks

'Callback',@edittext_callback);
sth = uicontrol(fh,'Style','text',...

'String','Enter a value or click the slider.',...
'Position',[30 215 240 20]);

number_errors = 0;
previous_val = 0;
val = 0;
% --
% Set the value of the edit text component String property
% to the value of the slider.

function slider_callback(hObject,eventdata)
previous_val = val;
val = get(hObject,'Value');
set(eth,'String',num2str(val));
sprintf('You moved the slider %d units.',abs(val - previous_val))

end
% --
% Set the slider value to the number the user types in
% the edit text or display an error message.

function edittext_callback(hObject,eventdata)
previous_val = val;
val = str2double(get(hObject,'String'));
% Determine whether val is a number between the
% slider's Min and Max. If it is, set the slider Value.
if isnumeric(val) && length(val) == 1 && ...

val >= get(sh,'Min') && ...
val <= get(sh,'Max')
set(sh,'Value',val);
sprintf('You moved the slider %d units.',abs(val - previous_val)

else
% Increment the error count, and display it.

number_errors = number_errors+1;
set(hObject,'String',...

['You have entered an invalid entry ',...
num2str(number_errors),' times.']);

val = previous_val;
end

end
end

13-11

13 Managing Application-Defined Data

Because the components are constructed at the top level, their handles are
immediately available to the callbacks that are nested at a lower level of the
routine. The same is true of the error counter number_errors, the previous
slider value previous_val, and the new slider value val. There is no need to
pass these variables as arguments.

Both callbacks use the input argument hObject to get and set properties of
the component that triggered execution of the callback. This argument is
available to the callbacks because the components’ Callback properties are
specified as function handles. See “Associating Callbacks with Components”
on page 12-12 for more information.

Slider Callback. The slider callback, slider_callback, uses the edit text
component handle, eth, to set the edit text 'String' property to the value the
user typed.

The slider Callback saves the previous value, val, of the slider in
previous_val before assigning the new value to val. These variables are
known to both callbacks because they are initialized at a higher level. They
can be retrieved and set by either callback.

previous_val = val;
val = get(hObject,'Value');

The following statements in the slider Callback update the value displayed
in the edit text component when a user moves the slider and releases the
mouse button.

val = get(hObject,'Value');
set(eth,'String',num2str(val));

The code combines three commands:

• The get command obtains the current value of the slider.

• The num2str command converts the value to a string.

• The set command sets the String property of the edit text component
to the updated value.

13-12

Sharing Data Among a GUI’s Callbacks

Edit Text Callback. The edit text Callback, edittext_callback, uses the
slider handle, sh, to determine the slider’s Max and Min properties and to set
the slider Value property, which determine’s the position of the slider thumb.

The edit text Callback uses the following code to set the slider’s value to
the number the user types in, after checking to see if it is a single numeric
value within the allowed range.

if isnumeric(val) && length(val) == 1 && ...
val >= get(sh,'Min') && ...
val <= get(sh,'Max')
set(sh,'Value',val);

If the value is out of range, the if statement continues by incrementing the
error counter, number_errors, and displaying a message telling the user how
many times they have entered an invalid number.

else
number_errors = number_errors+1;
set(hObject,'String',...
['You have entered an invalid entry ',...
num2str(number_errors),' times.']);

end

GUI Data
GUI data, which you manage with the guidata function, is accessible to all
callbacks of the GUI. A callback for one component can set a value in GUI
data, which can then be read by a callback for another component. See “GUI
Data” on page 13-2 for more information.

GUI Data Example: Passing Data Between Components
The previous topic, “Nested Functions Example: Passing Data Between
Components” on page 13-9, uses nested function capabilities to initialize and
maintain an error counter as well as the old and new values of the slider. This
example shows you how to initialize and maintain the old and new values of
the slider using GUI data and make them available to the both callbacks.
Refer to the previous topic for details of the example.

13-13

13 Managing Application-Defined Data

The following code is similar to the previous topic but uses GUI data to
initialize and maintain the old and new slider values in the edit text and slider
Callbacks. Copy this code into an M-file and save it in your current directory
or on your path as slider_gui.m. Run the script by typing slider_gui at
the command line.

function slider_gui
fh = figure('Position',[250 250 350 350]);
sh = uicontrol(fh,'Style','slider',...

'Max',100,'Min',0,'Value',25,...
'SliderStep',[0.05 0.2],...
'Position',[300 25 20 300],...
'Callback',@slider_callback);

eth = uicontrol(fh,'Style','edit',...
'String',num2str(get(sh,'Value')),...
'Position',[30 175 240 20],...
'Callback',@edittext_callback);

sth = uicontrol(fh,'Style','text',...
'String','Enter a value or click the slider.',...
'Position',[30 215 240 20]);

number_errors = 0;
slider.val = 25;
guidata(fh,slider);
% --
% Set the value of the edit text component String property
% to the value of the slider.

function slider_callback(hObject,eventdata)
slider = guidata(fh); % Get GUI data.
slider.previous_val = slider.val;
slider.val = get(hObject,'Value');
set(eth,'String',num2str(slider.val));
sprintf('You moved the slider %d units.',...

abs(slider.val - slider.previous_val))
guidata(fh,slider) % Save GUI data before returning.

end
% --
% Set the slider value to the number the user types in
% the edit text or display an error message.

function edittext_callback(hObject,eventdata)
slider = guidata(fh); % Get GUI data.

13-14

Sharing Data Among a GUI’s Callbacks

slider.previous_val = slider.val;
slider.val = str2double(get(hObject,'String'));

% Determine whether slider.val is a number between the
% slider's Min and Max. If it is, set the slider Value.
if isnumeric(slider.val) && length(slider.val) == 1 && ...

slider.val >= get(sh,'Min') && ...
slider.val <= get(sh,'Max')
set(sh,'Value',slider.val);
sprintf('You moved the slider %d units.',...

abs(slider.val - slider.previous_val))
else
% Increment the error count, and display it.

number_errors = number_errors+1;
set(hObject,'String',...

['You have entered an invalid entry ',...
num2str(number_errors),' times.']);

slider.val = slider.previous_val;
end
guidata(fh,slider); % Save the changes as GUI data.

end
end

Slider Values. In this example, both the slider callbackslider_callback
and the edit text callback edittext_callback retrieve the GUI data structure
slider which hold previous and current values of the slider. They then save
the value, slider.val to slider.previous_val before retrieving the new
value and assigning it to slider.val. Before returning, each callback saves
the slider structure to GUI data.

slider = guidata(fh); % Get GUI data.
slider.previous_val = slider.val;
slider.val = ...;
...

guidata(fh,slider) % Save GUI data before returning.

Both callbacks use the guidata function to retrieve and save the slider
structure as GUI data.

13-15

13 Managing Application-Defined Data

Application Data
Application data can be associated with any object—a component, menu, or
the figure itself. To access application data, a callback must know the name of
the data and the handle of the component with which it is associated. Use the
functions setappdata, getappdata, isappdata, and rmappdata to manage
application data.

See “Application Data” on page 13-5 for more information about application
data.

Application Data Example: Passing Data Between Components
The earlier topic, “Nested Functions Example: Passing Data Between
Components” on page 13-9, uses nested function capabilities to initialize and
maintain an error counter as well as the old and new values of the slider. This
example shows you how to initialize and maintain the old and new values of
the slider using application data (appdata) and make them available to the
both callbacks. Refer to the earlier topic for details of the example.

The following code is similar to the earlier topic but uses application data
to initialize and maintain the old and new slider values in the edit text
and slider Callbacks. Copy this code into an M-file and save it in your
current directory or on your path as slider_gui.m. Run the script by typing
slider_gui at the command line.

function slider_gui
fh = figure('Position',[250 250 350 350]);
sh = uicontrol(fh,'Style','slider',...

'Max',100,'Min',0,'Value',25,...
'SliderStep',[0.05 0.2],...
'Position',[300 25 20 300],...
'Callback',@slider_callback);

eth = uicontrol(fh,'Style','edit',...
'String',num2str(get(sh,'Value')),...
'Position',[30 175 240 20],...
'Callback',@edittext_callback);

sth = uicontrol(fh,'Style','text',...
'String','Enter a value or click the slider.',...
'Position',[30 215 240 20]);

number_errors = 0;

13-16

Sharing Data Among a GUI’s Callbacks

slider_data.val = 25;
% Create appdata with name 'slider'.
setappdata(fh,'slider',slider_data);
% --
% Set the value of the edit text component String property
% to the value of the slider.

function slider_callback(hObject,eventdata)
% Get 'slider' appdata.
slider_data = getappdata(fh,'slider');
slider_data.previous_val = slider_data.val;
slider_data.val = get(hObject,'Value');
set(eth,'String',num2str(get(slider_data.val)));
sprintf('You moved the slider %d units.',...

abs(slider_data.val - slider_data.previous_val))
% Save 'slider' appdata before returning.
setappdata(fh,'slider',slider_data)

end
% --
% Set the slider value to the number the user types in
% the edit text or display an error message.

function edittext_callback(hObject,eventdata)
% Get 'slider' appdata.
slider_data = getappdata(fh,'slider');
slider_data.previous_val = slider_data.val;
slider_data.val = str2double(get(hObject,'String'));
% Determine whether val is a number between the
% slider's Min and Max. If it is, set the slider Value.
if isnumeric(slider_data.val) && ...

length(slider_data.val) == 1 && ...
slider_data.val >= get(sh,'Min') && ...
slider_data.val <= get(sh,'Max')
set(sh,'Value',slider_data.val);

else
% Increment the error count, and display it.

number_errors = number_errors+1;
set(hObject,'String',...

['You have entered an invalid entry ',...
num2str(number_errors),' times.']);

slider_data.val = slider_data.previous_val;
end

13-17

13 Managing Application-Defined Data

% Save appdata before returning.
setappdata(fh,'slider',slider_data);

end
end

Slider Values. In this example, both the slider callbackslider_callback
and the edit text callback edittext_callback retrieve the application data
structure slider_data which holds previous and current values of the slider.
They then save the value, slider_data.val to slider_data.previous_val
before retrieving the new value and assigning it to slider_data.val. Before
returning, each callback saves the slider_data structure in the slider
application data.

% Get 'slider' appdata.
slider_data = getappdata(fh,'slider');
slider_data.previous_val = slider_data.val;
slider_data.val = ...;
...
% Save 'slider' appdata before returning.
setappdata(fh,'slider',slider_data)

Both callbacks use the getappdata and setappdata functions to retrieve and
save the slider_data structure as slider application data.

UserData Property
Every GUI component, and the figure itself, has a UserData property that you
can use to store application-defined data. To access UserData, a callback must
know the handle of the component with which a specific UserData property
is associated.

Use the get function to retrieve UserData, and the set function to set it.

UserData Property Example: Passing Data Between
Components
The previous topic, “Nested Functions Example: Passing Data Between
Components” on page 13-9, uses nested function capabilities to initialize and
maintain an error counter. This example shows you how to do the same thing
using the edit text component’s UserData property to store the error count.
Refer to the earlier example for example details.

13-18

Sharing Data Among a GUI’s Callbacks

The following code is the same as in the earlier topic but uses the UserData
property to initialize and increment the error counter.

function slider_gui
fh = figure('Position',[250 250 350 350]);
sh = uicontrol(fh,'Style','slider',...

'Max',100,'Min',0,'Value',25,...
'SliderStep',[0.05 0.2],...
'Position',[300 25 20 300],...
'Callback',@slider_callback);

eth = uicontrol(fh,'Style','edit',...
'String',num2str(get(sh,'Value')),...
'Position',[30 175 240 20],...
'Callback',@edittext_callback);

sth = uicontrol(fh,'Style','text',...
'String','Enter a value or click the slider.',...
'Position',[30 215 240 20]);

number_errors = 0;
slider.val = 25;
% Set edit text UserData property to slider structure.
set(eth,'UserData',slider)
% --
% Set the value of the edit text component String property
% to the value of the slider.

function slider_callback(hObject,eventdata)
% Get slider from edit text UserData.
slider = get(eth,'UserData');
slider.previous_val = slider.val;
slider.val = get(hObject,'Value');
set(eth,'String',num2str(slider.val));
sprintf('You moved the slider %d units.',...

abs(slider.val - slider.previous_val))
% Save slider in UserData before returning.
set(eth,'UserData',slider)

end
% --
% Set the slider value to the number the user types in
% the edit text or display an error message.

function edittext_callback(hObject,eventdata)
% Get slider from edit text UserData.

13-19

13 Managing Application-Defined Data

slider = get(eth,'UserData');
slider.previous_val = slider.val;
slider.val = str2double(get(hObject,'String'));
% Determine whether slider.val is a number between the
% slider's Min and Max. If it is, set the slider Value.
if isnumeric(slider.val) && ...

length(slider.val) == 1 && ...
slider.val >= get(sh,'Min') && ...
slider.val <= get(sh,'Max')
set(sh,'Value',slider.val);
sprintf('You moved the slider %d units.',...

abs(slider.val - slider.previous_val))
else
% Increment the error count, and display it.

data = get(hObject,'UserData');
data.number_errors = data.number_errors+1;
set(hObject,'UserData',data); % Save the changes.
set(hObject,'String',...

['You have entered an invalid entry ',...
num2str(number_errors),' times.']);

slider.val = slider.previous_val;
end
% Save slider structure in UserData before returning.
set(eth,'UserData',slider)

end
end

Slider Values. In this example, both the slider callbackslider_callback
and the edit text callback edittext_callback retrieve the structure slider
from the edit text UserData property. The slider structure holds previous
and current values of the slider. The callbacks then save the value slider.val
to slider.previous_val before retrieving the new value and assigning it to
slider.val. Before returning, each callback saves the slider structure in
the edit textUserData property.

% Get slider structure from edit text UserData.
slider = get(eth,'UserData',slider);
slider.previous_val = slider.val;
slider.val = ...;
...

13-20

Sharing Data Among a GUI’s Callbacks

% Save slider structure in UserData before returning.
set(eth,'UserData',slider)

Both callbacks use the get and set functions to retrieve and save the slider
structure in the edit text UserData property.

13-21

13 Managing Application-Defined Data

13-22

14

Managing Callback
Execution

Callback Interruption (p. 14-2) Explains callback interruption using
the Interruptible and BusyAction
properties.

14 Managing Callback Execution

Callback Interruption

In this section...

“Callback Execution” on page 14-2

“How the Interruptible Property Works” on page 14-2

“How the Busy Action Property Works” on page 14-3

“Example” on page 14-4

Callback Execution
Callback execution is event driven and callbacks from different GUIs share
the same event queue. In general, callbacks are triggered by user events
such as a mouse click or key press. Because of this, you cannot predict, when
a callback is requested, whether or not another callback is executing or, if
one is, which callback it is.

If a callback is executing and the user triggers an event for which a callback
is defined, that callback attempts to interrupt the callback that is already
executing. When this occurs, MATLAB processes the callbacks according
to these factors:

• The Interruptible property of the object whose callback is already
executing. The Interruptible property specifies whether the executing
callback can be interrupted.

• The BusyAction property of the object whose callback has just been
triggered and wants to execute. The BusyAction property specifies whether
a callback should be queued to await execution or be canceled.

How the Interruptible Property Works
An object’s Interruptible property can be either on (the default) or off.

If theInterruptible property of the object whose callback is executing is on,
the callback can be interrupted. However, it is interrupted only when it, or
a function it triggers, calls drawnow, figure, getframe, pause, or waitfor.
Before performing their defined tasks, these functions process any events in
the event queue, including any waiting callbacks. If the executing callback, or

14-2

Callback Interruption

a function it triggers, calls none of these functions, it cannot be interrupted
regardless of the value of its object’s Interruptible property.

If the Interruptible property of the object whose callback is executing
is off, the callback cannot be interrupted with the following exceptions. If
the interrupting callback is a DeleteFcn or CreateFcn callback or a figure’s
CloseRequest or ResizeFcn callback, it interrupts an executing callback
regardless of the value of the executing callback object’s Interruptible
property. These callbacks too can interrupt only when a drawnow, figure,
getframe, pause, or waitfor function executes.

The callback properties to which Interruptible can apply depend on the
objects for which the callback properties are defined:

• For figures, only callback routines defined for the ButtonDownFcn,
KeyPressFcn, KeyReleaseFcn, WindowButtonDownFcn,
WindowButtonMotionFcn, WindowButtonUpFcn, and
WindowScrollWheelFcn are affected by the Interruptible
property.

• For GUI components, Interruptible is applies to the ButtonDownFcn,
Callback, KeyPressFcn, SelectionChangeFcn, ClickedCallback,
OffCallback, and OnCallback properties, for the components for which
these properties are defined.

How the Busy Action Property Works
An object’s BusyAction property can be either queue (the default) or cancel.
The BusyAction property of the interrupting callback’s object is taken into
account only if the Interruptible property of the executing callback’s object
is off, i.e., the executing callback is not interruptible.

If a noninterruptible callback is executing and an event (such as a mouse
click) triggers a new callback, MATLAB uses the value of the new callback
object’s BusyAction property to decide whether to queue the requested
callback or cancel it.

• If the BusyAction value is queue, the requested callback is added to the
event queue and executes in its turn when the executing callback finishes
execution.

14-3

14 Managing Callback Execution

• If the value is cancel, the event is discarded and the requested callback
does not execute.

If an interruptible callback is executing, the requested callback runs when
the executing callback terminates or calls drawnow, figure, getframe, pause,
or waitfor. The BusyAction property of the requested callback’s object has
no effect.

Example
This example demonstrates control of callback interruption using the
Interruptible and BusyAction properties. It creates two GUIs:

• The first GUI contains two push buttons, Wait (interruptible) whose
Interruptible property is set to on, and Wait (noninterruptible)whose
Interruptible property is set to off. Clicking either button triggers the
button’s Callback callback, which creates and updates a waitbar.

This code creates the two Wait buttons and specifies the callbacks that
service them.

h_interrupt = uicontrol(h_panel1,'Style','pushbutton',...
'Position',[30,110,120,30],...
'String','Wait (interruptible)',...
'Interruptible','on',...
'Callback',@wait_interruptible);

14-4

Callback Interruption

h_noninterrupt = uicontrol(h_panel1,'Style','pushbutton',...
'Position',[30,40,120,30],...
'String','Wait (noninterruptible)',...
'Interruptible','off',...
'Callback',@wait_noninterruptible);

• The second GUI contains two push buttons, Surf Plot (queue) whose
BusyAction property is set to queue, and Mesh Plot (cancel)whose
BusyAction property is set to cancel. Clicking either button triggers the
button’s Callback callback to generate a plot in the axes.

This code creates the two plot buttons and specifies the callbacks that
service them.

hsurf_queue = uicontrol(h_panel2,'Style','pushbutton',...
'Position',[30,200,110,30],...
'String','Surf Plot (queue)',...
'TooltipString','BusyAction = queue',...
'BusyAction','queue',...
'Callback',@surf_queue);

hmesh_cancel = uicontrol(h_panel2,'Style','pushbutton',...
'Position',[30,130,110,30],...

14-5

14 Managing Callback Execution

'String','Mesh Plot (cancel)',...
'BusyAction','cancel',...
'TooltipString','BusyAction = cancel',...
'Callback',@mesh_cancel);

Using the Example GUIs
Click here to run the example GUIs.

Note This link executes MATLAB commands and is designed to work within
the MATLAB Help browser. If you are reading this online or in PDF, you
should go to the corresponding section in the MATLAB Help Browser to use
the link.

To see the interplay of the Interruptible and BusyAction properties:

1 Click one of the Wait buttons in the first GUI. Both buttons create and
update a waitbar.

2 While the waitbar is active, click either the Surf Plot or the Mesh Plot
button in the second GUI. The Surf Plot button creates a surf plot using
peaks data. The Mesh Plot button creates a mesh plot using the same data.

The following topics describe what happens when you click specific
combinations of buttons:

• “Clicking a Wait Button” on page 14-6

• “Clicking a Plot Button” on page 14-7

Clicking a Wait Button.

The Wait buttons are the same except for their Interruptible
properties. Their Callback callbacks, which are essentially the same,
call the utility function create_update_waitbar which calls waitbar
to create and update a waitbar. The Wait (Interruptible) button
Callback callback,wait_interruptible, can be interrupted each time
waitbar calls drawnow. The Wait (Noninterruptible) button Callback

14-6

Callback Interruption

callback,wait_noninterruptible, cannot be interrupted (except by specific
callbacks listed in “How the Interruptible Property Works” on page 14-2).

This is the Wait (Interruptible) button Callback
callback,wait_interruptible:

function wait_interruptible(hObject,eventdata)
% Disable the other push button.
set(h_noninterrupt,'Enable','off')
% Clear the axes in the other GUI.
cla(h_axes2,'reset')
% Create and update the waitbar.
create_update_waitbar
% Enable the other push button
set(h_noninterrupt,'Enable','on')

end

The callback first disables the other push button and clears the axes in the
second GUI. It then calls the utility function create_update_waitbar to
create and update a waitbar. When create_update_waitbar returns, it
enables the other button.

Clicking a Plot Button. What happens when you click a Plot button
depends on which Wait button you clicked first and the BusyAction property
of the Plot button.

• If you click Surf Plot, whose BusyAction property is queue, MATLAB
queues the Surf Plot callback surf_queue.

If you clicked the Wait (interruptible) button first, surf_queue runs
and displays the surf plot when the waitbar issues a call to drawnow,
terminates, or is destroyed.

If you clicked the Wait (noninterruptible) button first, surf_queue runs
only when the waitbar terminates or is destroyed.

This is the surf_queue callback:

function surf_queue(hObject,eventdata)
h_plot = surf(h_axes2,peaks_data);

end

14-7

14 Managing Callback Execution

• If you click Mesh Plot , whose BusyAction property is cancel, after
having clicked Wait (noninterruptible), MATLAB discards the button
click event and does not queue the mesh_cancel callback.

If you click Mesh Plot after having clicked Wait (interruptible), the
Mesh Plot BusyAction property has no effect. MATLAB queues the
Mesh Plot callback, mesh_cancel. It runs and displays the mesh plot
when the waitbar issues a call to drawnow, terminates, or is destroyed.

This is the mesh_plot callback:

function mesh_cancel(hObject,eventdata)
h_plot = surf(h_axes2,peaks_data);

end

View the Complete GUI M-File
If you are reading this in the MATLAB Help browser, you can click here to
display a complete listing of the code used in this example in the MATLAB
Editor.

Note This link executes MATLAB commands and is designed to work within
the MATLAB Help browser. If you are reading this online or in PDF, you
should go to the corresponding section in the MATLAB Help Browser to use
the links.

14-8

15

Examples of GUIs Created
Programmatically

Introduction (p. 15-2) Introduces the examples and lists
the programming techniques they
illustrate.

GUI with Axes, Menu, and Toolbar
(p. 15-3)

Creates a GUI that displays a
user-selected plot in an axes.

Color Palette (p. 15-17) Creates a color palette that can
be embedded in a host GUI. The
color palette enables a user to select
colors.

Icon Editor (p. 15-29) Creates an icon editor that enables
a user to create and edit icons. It
embeds the color palette from the
previous example.

15 Examples of GUIs Created Programmatically

Introduction
This chapter provides three examples that illustrate the application of certain
techniques in programmatically created GUIs.

• “GUI with Axes, Menu, and Toolbar” on page 15-3

• “Color Palette” on page 15-17

• “Icon Editor” on page 15-29

Each example lists the techniques it illustrates. These techniques include:

• Creation of a dialog that does not return until the user makes a choice

• Passing input arguments to the GUI when it is opened

• Obtaining output from the GUI when it returns

• Shielding the GUI from accidental changes

• Running the GUI across multiple platforms

• Making a GUI modal

• Sharing data among multiple GUIs

• Creating menus and context menus

• Creating toolbars

• Using an external utility function

• Achieving proper resize behavior

The examples all use nested functions. For information about using
nested functions, see “Nested Functions” in the MATLAB Programming
documentation.

15-2

GUI with Axes, Menu, and Toolbar

GUI with Axes, Menu, and Toolbar

In this section...

“The Example” on page 15-3

“Techniques Used in the Example” on page 15-5

“View and Run the Completed GUI M-Files” on page 15-5

“Creating the Data” on page 15-6

“Creating the GUI and Its Components” on page 15-6

“Initializing the GUI” on page 15-11

“Defining the Callbacks” on page 15-12

“Helper Function: Plotting the Plot Types” on page 15-16

The Example
This example creates a GUI that displays a user-selected plot in an axes. The
GUI contains the following components:

• Axes

• Pop-up menu with a list of five plots

• Push button for updating the contents of the axes

• Menu bar File menu with three items: Open, Print, and Close

• Toolbar with two buttons that enable a user to open files and print the plot.

15-3

15 Examples of GUIs Created Programmatically

When you run the GUI, it initially displays a plot of five random numbers
generated by the MATLAB rand(5) command, as shown in the following
figure.

You can select other plots in the pop-up menu. Clicking the Update button
displays the currently selected plot on the axes.

The GUI File menu has three items:

• Open displays a dialog from which you can open files on your computer.

• Print opens the Print dialog. Clicking Yes in the Print dialog prints the
plot.

• Close closes the GUI.

15-4

GUI with Axes, Menu, and Toolbar

The GUI toolbar has two buttons:

• The Open button performs the same function as the Open menu item. It
displays a dialog from which you can open files on your computer.

• The Print button performs the same function as the Print menu item. It
opens the Print dialog. Clicking Yes in the Print dialog prints the plot.

Techniques Used in the Example
This example illustrates the following techniques:

• Passing input arguments to the GUI when it is opened

• Obtaining output from the GUI when it returns

• Shielding the GUI from accidental changes

• Running the GUI across multiple platforms

• Creating menus

• Creating toolbars

• Achieving proper resize behavior

Note This example uses nested functions. For information about using
nested functions, see “Nested Functions” in the MATLAB Programming
documentation.

View and Run the Completed GUI M-Files
If you are reading this in the MATLAB Help browser, you can click the
following links to display the MATLAB Editor with complete listings of the
code used in this example.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this online or
in PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the links.

15-5

15 Examples of GUIs Created Programmatically

• Click here to display the main GUI M-file in the MATLAB Editor.

• Click here to display the utility iconRead M-file in the MATLAB Editor.

• Click here to run the GUI with axes, menu, and toolbar.

Creating the Data
The example defines two variables mOutputArgs and mPlotTypes.

mOutputArgs is a cell array that holds output values should the user request
them. The example later assigns a default value to this argument.

mOutputArgs = {}; % Variable for storing output when GUI returns

mPlotTypes is a 5-by-2 cell array that holds the data to be plotted in the axes.
The first column contains the strings that are used to populate the pop-up
menu. The second column contains the functions, as anonymous function
handles, that create the plots.

mPlotTypes = {... % Example plot types shown by this GUI

'plot(rand(5))', @(a)plot(a,rand(5));

'plot(sin(1:0.01:25))', @(a)plot(a,sin(1:0.01:25));

'bar(1:.5:10)', @(a)bar(a,1:.5:10);

'plot(membrane)', @(a)plot(a,membrane);

'surf(peaks)', @(a)surf(a,peaks)};

Because the data is created at the top level of the GUI function, it is available
to all callbacks and other functions in the GUI.

See “Anonymous Functions” in the MATLAB Programming documentation
for information about using anonymous functions.

Creating the GUI and Its Components
Like the data, the components are created at the top level so that their
handles are available to all callbacks and other functions in the GUI.

• “The Main Figure” on page 15-7

• “The Axes” on page 15-7

• “The Pop-Up Menu” on page 15-8

15-6

GUI with Axes, Menu, and Toolbar

• “The Update Push Button” on page 15-9

• “The File Menu and Its Menu Items” on page 15-9

• “The Toolbar and Its Tools” on page 15-10

The Main Figure
The following statement creates the figure for GUI.

hMainFigure = figure(... % The main GUI figure

'MenuBar','none', ...

'Toolbar','none', ...

'HandleVisibility','callback', ...

'Color', get(0,...

'defaultuicontrolbackgroundcolor'));

• The figure function creates the GUI figure.

• Setting the MenuBar and Toolbar properties to none, prevents the standard
menu bar and toolbar from displaying.

• Setting the HandleVisibility property to callback ensures that the
figure can be accessed only from within a GUI callback, and cannot be
drawn into or deleted from the command line.

• The Color property defines the background color of the figure. In this
case, it is set to be the same as the default background color of uicontrol
objects, such as the Update push button. The factory default background
color of uicontrol objects is the system default and can vary from system
to system. This statement ensures that the figure’s background color
matches the background color of the components.

See the Figure Properties reference page for information about figure
properties and their default values.

The Axes
The following statement creates the axes.

hPlotAxes = axes(... % Axes for plotting the selected plot
'Parent', hMainFigure, ...
'Units', 'normalized', ...
'HandleVisibility','callback', ...

15-7

15 Examples of GUIs Created Programmatically

'Position',[0.11 0.13 0.80 0.67]);

• The axes function creates the axes. Setting the axes Parent property to
hMainFigure makes it a child of the main figure.

• Setting the Units property to normalized ensures that the axes resizes
proportionately when the GUI is resized.

• The Position property is a 4-element vector that specifies the location of
the axes within the figure and its size: [distance from left, distance from
bottom, width, height]. Because the units are normalized, all values are
between 0 and 1.

Note If you specify the Units property, then the Position property, and
any other properties that depend on the value of the Units property, should
follow the Units property specification.

See the Axes Properties reference page for information about axes properties
and their default values.

The Pop-Up Menu
The following statement creates the pop-up menu.

hPlotsPopupmenu = uicontrol(... % List of available types of plot

'Parent', hMainFigure, ...

'Units','normalized',...

'Position',[0.11 0.85 0.45 0.1],...

'HandleVisibility','callback', ...

'String',mPlotTypes(:,1),...

'Style','popupmenu');

• The uicontrol function creates various user interface controls based on the
value of the Style property. Here the Style property is set to popupmenu.

• For a pop-up menu, the String property defines the list of items in the
menu. Here it is defined as a 5-by-1 cell array of strings derived from the
cell array mPlotTypes.

15-8

GUI with Axes, Menu, and Toolbar

See the Uicontrol Properties reference page for information about properties
of uicontrol objects and their default values.

The Update Push Button
This statement creates the Update push button as a uicontrol object.

hUpdateButton = uicontrol(... % Button for updating selected plot

'Parent', hMainFigure, ...

'Units','normalized',...

'HandleVisibility','callback', ...

'Position',[0.6 0.85 0.3 0.1],...

'String','Update',...

'Callback', @hUpdateButtonCallback);

• The uicontrol function creates various user interface controls based on
the value of the Style property. This statement does not set the Style
property because its default is pushbutton.

• For a push button, the String property defines the label on the button.
Here it is defined as the string Update.

• Setting the Callback property to @hUpdateButtonCallback defines the
name of the callback function that services the push button. That is,
clicking the push button triggers the execution of the named callback. This
callback function is defined later in the script.

See the Uicontrol Properties reference page for information about properties
of uicontrol objects and their default values.

The File Menu and Its Menu Items
These statements define the File menu and the three items it contains.

hFileMenu = uimenu(... % File menu
'Parent',hMainFigure,...
'HandleVisibility','callback', ...
'Label','File');

hOpenMenuitem = uimenu(... % Open menu item
'Parent',hFileMenu,...
'Label','Open',...
'HandleVisibility','callback', ...

15-9

15 Examples of GUIs Created Programmatically

'Callback', @hOpenMenuitemCallback);
hPrintMenuitem = uimenu(... % Print menu item

'Parent',hFileMenu,...
'Label','Print',...
'HandleVisibility','callback', ...
'Callback', @hPrintMenuitemCallback);

hCloseMenuitem = uimenu(... % Close menu item
'Parent',hFileMenu,...
'Label','Close',...
'Separator','on',...
'HandleVisibility','callback', ...
'Callback', @hCloseMenuitemCallback');

• The uimenu function creates both the main menu, File, and the items it
contains. For the main menu and each of its items, set the Parent property
to the handle of the desired parent to create the menu hierarchy you want.
Here, setting the Parent property of the File menu to hMainFigure makes
it the child of the main figure. This statement creates a menu bar in the
figure and puts the File menu on it.

For each of the menu items, setting its Parent property to the handle of the
parent menu, hFileMenu, causes it to appear on the File menu.

• For the main menu and each item on it, the Label property defines the
strings that appear in the menu.

• Setting the Separator property to on for the Close menu item causes a
separator line to be drawn above this item.

• For each of the menu items, the Callback property specifies the callback
that services that item. In this example, no callback services the File menu
itself. These callbacks are defined later in the script.

See the Uicontrol Properties reference page for information about properties
of uicontrol objects and their default values.

The Toolbar and Its Tools
These statements define the toolbar and the two buttons it contains.

hToolbar = uitoolbar(... % Toolbar for Open and Print buttons

'Parent',hMainFigure, ...

'HandleVisibility','callback');

15-10

GUI with Axes, Menu, and Toolbar

hOpenPushtool = uipushtool(... % Open toolbar button

'Parent',hToolbar,...

'TooltipString','Open File',...

'CData',iconRead(fullfile(matlabroot,...

'toolbox\matlab\icons\opendoc.mat')),...

'HandleVisibility','callback', ...

'ClickedCallback', @hOpenMenuitemCallback);

hPrintPushtool = uipushtool(... % Print toolbar button

'Parent',hToolbar,...

'TooltipString','Print Figure',...

'CData',iconRead(fullfile(matlabroot,...

'toolbox\matlab\icons\printdoc.mat')),...

'HandleVisibility','callback', ...

'ClickedCallback', @hPrintMenuitemCallback);

• The uitoolbar function creates the toolbar on the main figure.

• The uipushtool function creates the two push buttons on the toolbar.

• The uipushtool TooltipString property assigns a tool tip that displays
when the GUI user moves the mouse pointer over the button and leaves
it there.

• The CData property specifies a truecolor image that displays on the button.
For these two buttons, the utility iconRead function supplies the image. If
you are reading this in the MATLAB Help browser, click here to display
this utility M-file in the MATLAB Editor.

• For each of the uipushtools, the ClickedCallback property specifies the
callback that executes when the GUI user clicks the button. Note that the
Open push button and the Print push button use the same callbacks
as their counterpart menu items.

See “Creating Toolbars” on page 11-56 for more information.

Initializing the GUI
These statements create the plot that appears in the GUI when it first
displays, and, if the user provides an output argument when running the
GUI, define the output that is returned to the user .

% Update the plot with the initial plot type

15-11

15 Examples of GUIs Created Programmatically

localUpdatePlot();

% Define default output and return it if it is requested by users

mOutputArgs{1} = hMainFigure;

if nargout>0

[varargout{1:nargout}] = mOutputArgs{:};

end

• The localUpdatePlot function plots the selected plot type in the axes. For
a pop-up menu, the uicontrol Value property specifies the index of the
selected menu item in the String property. Since the default value is 1,
the initial selection is 'plot(rand(5))'. The localUpdatePlot function
is a helper function that is defined later in the script, at the same level
as the callbacks.

• The default output is the handle of the main figure.

Defining the Callbacks
This topic defines the callbacks that service the components of the GUI.
Because the callback definitions are at a lower level than the component
definitions and the data created for the GUI, they have access to all data
and component handles.

Although the GUI has six components that are serviced by callbacks, there
are only four callback functions. This is because the Open menu item and the
Open toolbar button share the same callbacks. Similarly, the Print menu
item and the Print toolbar button share the same callbacks.

• “Update Button Callback” on page 15-13

• “Open Menu Item Callback” on page 15-13

• “Print Menu Item Callback” on page 15-14

• “Close Menu Item Callback” on page 15-15

Note These are the callbacks that were specified in the component definitions,
“Creating the GUI and Its Components” on page 15-6.

15-12

GUI with Axes, Menu, and Toolbar

Update Button Callback
The hUpdateButtonCallback function services the Update push button.
Clicking the Update button triggers the execution of this callback function.

function hUpdateButtonCallback(hObject, eventdata)
% Callback function run when the Update button is pressed

localUpdatePlot();
end

The localUpdatePlot function is a helper function that plots the selected plot
type in the axes. It is defined later in the script, “Helper Function: Plotting
the Plot Types” on page 15-16.

Note MATLAB automatically passes hUpdateButtonCallback two
arguments, hObject and eventdata, because the Update push button
component Callback property, @hUpdateButtonCallback, is defined as a
function handle. hObject contains the handle of the component that triggered
execution of the callback. eventdata is reserved for future use. The function
definition line for your callback must account for these two arguments.

Open Menu Item Callback
The hOpenMenuitemCallback function services the Open menu item and
the Open toolbar button . Selecting the menu item or clicking the toolbar
button triggers the execution of this callback function.

function hOpenMenuitemCallback(hObject, eventdata)
% Callback function run when the Open menu item is selected

file = uigetfile('*.m');
if ~isequal(file, 0)

open(file);
end

end

15-13

15 Examples of GUIs Created Programmatically

The hOpenMenuitemCallback function first calls the uigetfile function to
open the standard dialog box for retrieving files. This dialog box lists all
M-files. If uigetfile returns a filename, the function then calls the open
function to open it.

Print Menu Item Callback
The hPrintMenuitemCallback function services the Print menu item and
the Print toolbar button . Selecting the menu item or clicking the toolbar
button triggers the execution of this callback function.

function hPrintMenuitemCallback(hObject, eventdata)
% Callback function run when the Print menu item is selected

printdlg(hMainFigure);
end

15-14

GUI with Axes, Menu, and Toolbar

The hPrintMenuitemCallback function calls the printdlg function. This
function opens the standard dialog box for printing the current figure.

Close Menu Item Callback
The hCloseMenuitemCallback function services the Close menu item. It
executes when the GUI user selects Close from the File menu.

function hCloseMenuitemCallback(hObject, eventdata)
% Callback function run when the Close menu item is selected

selection = ...
questdlg(['Close ' get(hMainFigure,'Name') '?'],...

['Close ' get(hMainFigure,'Name') '...'],...
'Yes','No','Yes');

if strcmp(selection,'No')
return;

end

delete(hMainFigure);

15-15

15 Examples of GUIs Created Programmatically

end

The hCloseMenuitemCallback function calls the questdlg function to create
and open the question dialog box shown in the following figure.

If the user clicks the No button, the callback returns. If the user clicks the
Yes button, the callback deletes the GUI.

See “Helper Function: Plotting the Plot Types” on page 15-16 for a description
of the localUpdatePlot function.

Helper Function: Plotting the Plot Types
The example defines the localUpdatePlot function at the same level as the
callback functions. Because of this, localUpdatePlot has access to the same
data and component handles.

function localUpdatePlot
% Helper function for plotting the selected plot type

mPlotTypes{get(hPlotsPopupmenu, 'Value'), 2}(hPlotAxes);
end

The localUpdatePlot function uses the pop-up menu Value property to
identify the selected menu item from the first column of the mPlotTypes
5-by-2 cell array, then calls the corresponding anonymous function from
column two of the cell array to create the plot in the axes.

15-16

Color Palette

Color Palette

In this section...

“The Example” on page 15-17

“Techniques Used in the Example” on page 15-21

“View and Run the Completed GUI M-File” on page 15-21

“Subfunction Summary” on page 15-21

“M-File Structure” on page 15-23

“GUI Programming Techniques” on page 15-24

The Example
This example creates a GUI, colorPalette, that enables a user to select a color
from a color palette or display the standard color selection dialog box. Another
example, “Icon Editor” on page 15-29, embeds the colorPalette, as the child of
a panel, in a GUI you can use to design an icon.

15-17

15 Examples of GUIs Created Programmatically

The colorPalette function populates a GUI figure or panel with a color
palette. The figure below shows the palette as the child of a figure.

The Components
The colorPalette includes the following components:

• An array of color cells defined as toggle buttons

• An Eraser toggle button with the icon

• A button group that contains the array of color cells and the eraser button.
The button group provides exclusive management of these toggle buttons.

• A More Colors push button

• A preview of the selected color, below the color cells, defined as a text
component

15-18

Color Palette

• Text components to specify the red, blue, and green color values

Using the Color Palette
These are the basic steps for using the color palette.

1 Clicking a color cell toggle button:

• Displays the selected color in the preview area.

• The red, green, and blue values for the newly selected color are displayed
in the R, G, and B fields to the right of the preview area.

• Causes colorPalette to return a function handle that the host GUI can
use to get the currently selected color.

2 Clicking the Eraser toggle button, causes colorPalette to return a value,
NaN, that the host GUI can use to remove color from a data point.

3 Clicking the More Colors button displays the standard dialog box for
setting a color.

15-19

15 Examples of GUIs Created Programmatically

Calling the colorPalette Function
You can call the colorPalette function with a statement such as

mGetColorFcn = colorPalette('Parent',hPaletteContainer)

The colorPalette function accepts property value pairs as input arguments.
Only the custom property Parent is supported. This property specifies the
handle of the parent figure or panel that contains the color palette. If the call
to colorPalette does not specify a parent, it uses the current figure, gcf.
Unrecognized property names or invalid values are ignored.

colorPalette returns a function handle that the host GUI can call to get the
currently selected color. The host GUI can use the returned function handle
at any time before the color palette is destroyed. For more information,
see “Sharing Data Between Two GUIs” on page 15-26 for implementation
details. “Icon Editor” on page 15-29 is an example of a host GUI that uses
the colorPalette.

15-20

Color Palette

Techniques Used in the Example
This example illustrates the following techniques:

• Retrieving output from the GUI when it returns.

• Supporting custom input property/value pairs with data validation.

• Sharing data between two GUIs

See “Icon Editor” on page 15-29 for examples of these and other programming
techniques.

Note This example uses nested functions. For information about using
nested functions, see “Nested Functions” in the MATLAB Programming
documentation.

View and Run the Completed GUI M-File
If you are reading this in the MATLAB Help browser, you can click the
following link to display the MATLAB Editor with a complete listing of the
code that is discussed in the following sections.

Note The following link executes MATLAB commands and is designed to
work within the MATLAB Help browser. If you are reading this online or
in PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the link.

• Click here to display the main GUI M-file in the MATLAB Editor.

• Click here to run the colorPalette GUI.

Subfunction Summary
The color palette example includes the callbacks listed in the following table.

15-21

15 Examples of GUIs Created Programmatically

Function Description

colorCellCallback Called by hPalettePanelSelectionChanged when any
color cell is clicked.

eraserToolCallback Called by hPalettePanelSelectionChanged when the
Eraser button is clicked.

hMoreColorButtonCallback Executes when the More Colors button is clicked. It calls
uisetcolor to open the standard color-selection dialog
box, and calls localUpdateColor to update the preview.

hPalettePanelSelectionChanged Executes when the GUI user clicks on a new color. This
is the SectionChangeFcn callback of the uibuttongroup
that exclusively manages the tools and color cells that it
contains. It calls the appropriate callback to service each
of the tools and color cells.

Note Three eventdata fields are defined for use with button groups
(uibuttongroup). These fields enable you to determine the previous and
current radio or toggle button selections maintained by the button group.
See SelectionChangeFcn in the Uibuttongroup Properties reference page
for more information.

The example also includes the helper functions listed in the following table.

15-22

Color Palette

Function Description

layoutComponent Dynamically creates the Eraser tool and the color
cells in the palette. It calls localDefineLayout.

localUpdateColor Updates the preview of the selected color.

getSelectedColor Returns the currently selected color which is
then returned to the colorPalette caller.

localDefineLayout Calculates the preferred color cell and tool sizes
for the GUI. It calls localDefineColors and
localDefineTools

localDefineTools Defines the tools shown in the palette. In this
example, the only tool is the Eraser button.

localDefineColors Defines the colors that are shown in the array
of color cells.

processUserInputs Determines if the property in a property/value
pair is supported. It calls localValidateInput.

localValidateInput Validates the value in a property/value pair.

M-File Structure
The colorPalette is programmed using nested functions. Its M-file is organized
in the following sequence:

1 Comments displayed in response to the help command.

2 Data creation. Because the example uses nested functions, defining this
data at the top level makes the data accessible to all functions without
having to pass them as arguments.

3 Command line input processing.

4 GUI figure and component creation.

5 GUI initialization.

6 Return output if it is requested.

15-23

15 Examples of GUIs Created Programmatically

7 Callback definitions. These callbacks, which service the GUI components,
are subfunctions of the colorPalette function and so have access to the
data and component handles created at the top level, without their having
to be passed as arguments.

8 Helper function definitions. These helper functions are subfunctions of
the colorPalette function and so have access to the data and component
handles created at the top level, without their having to be passed as
arguments.

Note For information about using nested functions, see “Nested Functions” in
the MATLAB Programming documentation.

GUI Programming Techniques
This topic explains the following GUI programming techniques as they are
used in the creation of the colorPalette.

• “Passing Input Arguments to a GUI” on page 15-24

• “Passing Output to a Caller on Returning” on page 15-26

• “Sharing Data Between Two GUIs” on page 15-26

See “Icon Editor” on page 15-29 for additional examples of these and other
programming techniques.

Passing Input Arguments to a GUI
Inputs to the GUI are custom property/value pairs. colorPalette allows one
such property: Parent. The names are case insensitive. The colorPalette
syntax is

mGetColorFcn = colorPalette('Parent',hPaletteContainer)

Definition and Initialization of the Properties. The colorPalette
function first defines a variable mInputArgs as varargin to accept the user
input arguments.

15-24

Color Palette

mInputArgs = varargin; % Command line arguments when invoking
% the GUI

The colorPalette function then defines the valid custom properties in a
3-by-3 cell array.

mPropertyDefs = {... % The supported custom property/value

% pairs of this GUI

'parent', @localValidateInput, 'mPaletteParent';

• The first column contains the property name.

• The second column contains a function handle for the function,
localValidateInput, that validates the input property values.

• The third column is the local variable that holds the value of the property.

colorPalette then initializes the properties with default values.

mPaletteParent = []; % Use input property 'parent' to initialize

Processing the Input Arguments. The processUserInputs helper
function processes the input property/value pairs. colorPalette calls
processUserInputs before it creates the components, to determine the parent
of the components.

% Process the command line input arguments supplied when
% the GUI is invoked
processUserInputs();

1 processUserInputs sequences through the inputs, if any, and tries
to match each property name to a string in the first column of the
mPropertyDefs cell array.

2 If it finds a match, processUserInputs assigns the value that was input
for the property to its variable in the third column of the mPropertyDefs
cell array.

3 processUserInputs then calls the helper function specified in the second
column of the mPropertyDefs cell array to validate the value that was
passed in for the property.

15-25

15 Examples of GUIs Created Programmatically

Passing Output to a Caller on Returning
If a host GUI calls the colorPalette function with an output argument, it
returns a function handle that the host GUI can call to get the currently
selected color.

The host GUI calls colorPalette only once. The call creates the color palette
in the specified parent and then returns the function handle. The host GUI
can call the returned function at any time before the color palette is destroyed.

The data definition section of the colorPalette M-file creates a cell array to
hold the output:

mOutputArgs = {}; % Variable for storing output when GUI returns

Just before returning, colorPalette assigns the function handle,
mgetSelectedColor, to the cell array mOutputArgs and then assigns
mOutputArgs to varargout to return the arguments.

mOutputArgs{} = @getSelectedColor;
if nargout>0

[varargout{1:nargout}] = mOutputArgs{:};
end

Sharing Data Between Two GUIs
The iconEditor embeds a GUI, the colorPalette, to enable the user to select
colors for the icon cells. The colorPalette returns a function handle the
iconEditor. The iconEditor can then call the returned function at any time to
get the selected color.

The colorPalette GUI. The colorPalette function defines a cell array,
mOutputArgs, to hold its output arguments.

mOutputArgs = {}; % Variable for storing output when GUI returns

15-26

Color Palette

Just before returning, colorPalette assigns mOutputArgs the function
handle for its getSelectedColor helper function and then assigns
mOutputArgs to varargout to return the arguments.

% Return user defined output if it is requested
mOutputArgs{1} =@getSelectedColor;
if nargout>0

[varargout{1:nargout}] = mOutputArgs{:};
end

The iconEditor executes the colorPalette’s getSeclectedColor function
whenever it invokes the function that colorPalette returns to it.

function color = getSelectedColor
% function returns the currently selected color in this
% colorPlatte

color = mSelectedColor;

The iconEditor GUI. The iconEditor function calls colorPalette only once
and specifies its parent to be a panel in the iconEditor.

% Host the ColorPalette in the PaletteContainer and keep the
% function handle for getting its selected color for editing
% icon.
mGetColorFcn = colorPalette('parent', hPaletteContainer);

This call creates the colorPalette as a component of the iconEditor and then
returns a function handle that iconEditor can call to get the currently
selected color.

The iconEditor’s localEditColor helper function calls mGetColorFcn,
the function returned by colorPalette, to execute the colorPalette’s
getSelectedColor function.

function localEditColor
% helper function that changes the color of an icon data
% point to that of the currently selected color in
% colorPalette

if mIsEditingIcon
pt = get(hIconEditAxes,'currentpoint');
x = ceil(pt(1,1));

15-27

15 Examples of GUIs Created Programmatically

y = ceil(pt(1,2));
color = mGetColorFcn();

% update color of the selected block
mIconCData(y, x,:) = color;

localUpdateIconPlot();
end

end

15-28

Icon Editor

Icon Editor

In this section...

“The Example” on page 15-29

“Techniques Used in the Example” on page 15-32

“View and Run the Completed GUI M-Files” on page 15-32

“Subfunction Summary” on page 15-32

“M-File Structure” on page 15-35

“GUI Programming Techniques” on page 15-35

The Example
This example creates a GUI that enables the user to create or edit an icon.
The figure below shows the editor.

15-29

15 Examples of GUIs Created Programmatically

The Components
The GUI includes the following components:

• A edit text that instructs the user or contains the name of the file to be
edited. The edit text is labeled using a static text.

• A push button to the right of the edit text enables the user to select an
existing icon file for editing.

• A panel containing an axes. The axes displays a 16-by-16 grid for drawing
an icon.

• A panel containing a button that shows a preview of the icon as it is being
created.

• A color palette that is created in a separate script and embedded in this
GUI. See “Color Palette” on page 15-17.

15-30

Icon Editor

• A panel, configured as a line, that separates the icon editor from the OK
and Cancel buttons.

• An OK push button that causes the GUI to return the icon as an
m-by-n-by-3 array and closes the GUI.

• A Cancel push button that closes the GUI without returning the icon.

Using the Icon Editor
These are the basic steps to create an icon:

1 Start the icon editor with a command such as

myicon = iconEditor('iconwidth',32,'iconheight',56);

where the iconwidth and iconheight properties specify the icon size in
pixels.

2 Color the squares in the grid.

• Click a color cell in the palette. That color is then displayed in the
palette preview.

• Click in specific squares of the grid to transfer the selected color to
those squares.

• Hold down the left mouse button and drag the mouse over the grid to
transfer the selected color to the squares that you touch.

• Change a color by writing over it with another color.

3 Erase the color in some squares.

• Click the Eraser button on the palette.

• Click in specific squares to erase those squares.

• Click and drag the mouse to erase the squares that you touch.

• Click a color cell to disable the Eraser.

4 Click OK to close the GUI and return, in myicon, the icon you created –
as a 32-by-65-by-3 array. Click Cancel to close the GUI and return an
empty array [] in myicon.

15-31

15 Examples of GUIs Created Programmatically

Techniques Used in the Example
This example illustrates the following GUI programming techniques:

• Creating a GUI that does not return a value until the user makes a choice.

• Retrieving output from the GUI when it returns.

• Supporting custom input property/value pairs with data validation.

• Protecting a GUI from being changed from the command line.

• Creating a GUI that runs on multiple platforms

• Sharing data between two GUIs

• Achieving the proper resize behavior

Note This example uses nested functions. For information about using
nested functions, see “Nested Functions” in the MATLAB Programming
documentation.

View and Run the Completed GUI M-Files
If you are reading this in the MATLAB Help browser, you can click the
following links to display the MATLAB Editor with a complete listing of the
code that is discussed in the following sections.

Note The following links execute MATLAB commands and are designed to
work within the MATLAB Help browser. If you are reading this online or
in PDF, you should go to the corresponding section in the MATLAB Help
Browser to use the links.

• Click here to display the main GUI M-file in the MATLAB Editor.

• Click here to display the utility iconRead M-file in the MATLAB Editor.

• Click here to run the iconEditor GUI.

Subfunction Summary
The icon editor example includes the callbacks listed in the following table.

15-32

Icon Editor

Function Description

hMainFigureWindowButtonDownFcn Executes when the user clicks
a mouse button anywhere
in the GUI figure. It calls
localEditColor.

hMainFigureWindowButtonUpFcn Executes when the user releases
the mouse button.

hMainFigureWindowButtonMotionFcn Executes when the user drags
the mouse anywhere in the figure
with a button pressed. It calls
localEditColor.

hIconFileEditCallback Executes after the user manually
changes the filename of the
icon to be edited. It calls
localUpdateIconPlot.

hIconFileEditButtondownFcn Executes the first time the user
clicks the Icon file edit box.

hOKButtonCallback Executes when the user clicks the
OK push button.

hCancelButtonCallback Executes when the user clicks the
Cancel push button.

hIconFileButtonCallback Executes when the user clicks the
Icon file push button . It calls
localUpdateIconPlot.

The example also includes the helper functions listed in the following table.

15-33

15 Examples of GUIs Created Programmatically

Function Description

localEditColor Changes the color of an icon
data point to the currently
selected color. Call the function
mGetColorFcn returned by the
colorPalette function. It also calls
localUpdateIconPlot.

localUpdateIconPlot Updates the icon preview. It also
updates the axes when an icon is
read from a file.

processUserInputs Determines if the property in a
property/value pair is supported. It
calls localValidateInput.

localValidateInput Validates the value in a
property/value pair.

prepareLayout Makes changes needed for look and
feel and for running on multiple
platforms.

15-34

Icon Editor

M-File Structure
The iconEditor is programmed using nested functions. Its M-file is organized
in the following sequence:

1 Comments displayed in response to the help command.

2 Data creation. Because the example uses nested functions, defining this
data at the top level makes the data accessible to all functions without
having to pass them as arguments.

3 GUI figure and component creation.

4 Command line input processing.

5 GUI initialization.

6 Block execution of the program until the GUI user clicks OK or Cancel.

7 Return output if requested.

8 Callback definitions. These callbacks, which service the GUI components,
are subfunctions of the iconEditor function and so have access to the
data and component handles created at the top level, without their having
to be passed as arguments.

9 Helper function definitions. These helper functions are subfunctions of the
iconEditor function and so have access to the data and component handles
created at the top level, without their having to be passed as arguments.

Note For information about using nested functions, see “Nested Functions” in
the MATLAB Programming documentation.

GUI Programming Techniques
This topic explains the following GUI programming techniques as they are
used in the creation of the iconEditor.

• “Returning Only After the User Makes a Choice” on page 15-36

• “Passing Input Arguments to a GUI” on page 15-37

15-35

15 Examples of GUIs Created Programmatically

• “Retrieving Output on Return from a GUI” on page 15-38

• “Protecting a GUI from Inadvertent Access” on page 15-39

• “Running a GUI on Multiple Platforms” on page 15-40

• “Making a GUI Modal” on page 15-41

• “Sharing Data Between Two GUIs” on page 15-42

• “Achieving Proper Resize Behavior” on page 15-43

Returning Only After the User Makes a Choice
At the end of the initialization code, and just before returning, iconEditor calls
uiwait with the handle of the main figure to make the GUI blocking.

% Make the GUI blocking
uiwait(hMainFigure);

% Return the edited icon CData if it is requested
mOutputArgs{1} =hMainFigure;
mOutputArgs{2} =mIconCData;
if nargout>0

[varargout{1:nargout}] = mOutputArgs{:};
end

Placement of the call to uiwait is important. Calling uiwait stops the
sequential execution of the iconEdit M-file after the GUI is initialized and
just before the file would return the edited icon data.

When the user clicks the OK button, its callback, hOKButtonCallback, calls
uiresume which enables the M-file to resume execution where it stopped and
return the edited icon data.

function hOKButtonCallback(hObject, eventdata)
% Callback called when the OK button is pressed

uiresume;
delete(hMainFigure);

end

15-36

Icon Editor

When the user clicks the Cancel button, its callback,
hOCancelButtonCallback, effectively deletes the icon data then
calls uiresume. This enables the M-file to resume execution where it stopped
but it returns a null matrix.

function hCancelButtonCallback(hObject, eventdata)
% Callback called when the Cancel button is pressed

mIconCData =[];
uiresume;
delete(hMainFigure);

end

Passing Input Arguments to a GUI
Inputs to the GUI are custom property/value pairs. iconEdit allows three
such properties: IconWidth, IconHeight, and IconFile. The names are
caseinsensitive.

Definition and Initialization of the Properties. The iconEdit first defines
a variable mInputArgs as varargin to accept the user input arguments.

mInputArgs = varargin; % Command line arguments when invoking
% the GUI

The iconEdit function then defines the valid custom properties in a 3-by-3
cell array.

mPropertyDefs = {... % Supported custom property/value

% pairs of this GUI

'iconwidth', @localValidateInput, 'mIconWidth';

'iconheight', @localValidateInput, 'mIconHeight';

'iconfile', @localValidateInput, 'mIconFile'};

• The first column contains the property name.

• The second column contains a function handle for the function,
localValidateInput, that validates the input property values.

• The third column is the local variable that holds the value of the property.

iconEdit then initializes the properties with default values.

15-37

15 Examples of GUIs Created Programmatically

mIconWidth = 16; % Use input property 'iconwidth' to initialize

mIconHeight = 16; % Use input property 'iconheight' to initialize

mIconFile = fullfile(matlabroot,'/toolbox/matlab/icons/');

The values of mIconWidth and mIconHeight are interpreted as pixels. The
fullfile function builds a full filename from parts.

Processing the Input Arguments. The processUserInputs helper function
processes the input property/value pairs. iconEdit calls processUserInputs
after the layout is complete and just before it needs the inputs to initialize
the GUI.

% Process the command line input arguments supplied when
% the GUI is invoked
processUserInputs();

1 processUserInputs sequences through the inputs, if any, and tries
to match each property name to a string in the first column of the
mPropertyDefs cell array.

2 If it finds a match, processUserInputs assigns the value that was input
for the property to its variable in the third column of the mPropertyDefs
cell array.

3 processUserInputs then calls the helper function specified in the second
column of the mPropertyDefs cell array to validate the value that was
passed in for the property.

Retrieving Output on Return from a GUI
If you call iconEditor with an output argument, it returns a truecolor image
as an n-by-m-by-3 array.

The data definition section of the M-file creates a cell array to hold the output:

mOutputArgs = {}; % Variable for storing output when GUI returns

Following the call to uiwait, which stops the sequential execution of the
M-file, iconEdit assigns the constructed icon array, mIconEdit, to the cell
array mOutputArgs and then assigns mOutputArgs to varargout to return the
arguments.

15-38

Icon Editor

mOutputArgs{} =mIconCData;
if nargout>0

[varargout{1:nargout}] = mOutputArgs{:};
end

This code is the last that iconEditor executes before returning. It
executes only after clicking the OK or Cancel button triggers execution of
hOKButtonCallback or hCancelButtonCallback, which call uiresume to
resume execution.

Protecting a GUI from Inadvertent Access
The prepareLayout utility function protects the iconEditor from inadvertently
being altered from the command line by setting the HandleVisibility
properties of all the components. The iconEditor calls prepareLayout with
the handle of the main figure, in the initialization section of the M-file.

% Make changes needed for proper look and feel and running on
% different platforms
prepareLayout(hMainFigure);

prepareLayout first uses findall to retrieve the handles of all objects
contained in the figure. The list of retrieved handles includes the
colorPalette, which is embedded in the iconEditor, and its children.
The figure’s handle is passed to prepareLayout as the input argument
topContainer.

allObjects = findall(topContainer);

prepareLayout then sets the HandleVisibility properties of all those
objects that have one to Callback.

% Make GUI objects available to callbacks so that they cannot
% be changed accidentally by other MATLAB commands
set(allObjects(isprop(allObjects,'HandleVisibility')),...

'HandleVisibility','Callback');

Setting HandleVisibility to Callback causes the GUI handles to be visible
from within callback routines or functions invoked by callback routines, but
not from within functions invoked from the command line. This ensures
that command-line users cannot inadvertently alter the GUI when it is the
current figure.

15-39

15 Examples of GUIs Created Programmatically

Running a GUI on Multiple Platforms
The prepareLayout utility function sets various properties of all the GUI
components to enable the GUI to retain the correct look and feel on multiple
platforms. The iconEditor calls prepareLayout with the handle of the main
figure, in the initialization section of the M-file.

% Make changes needed for proper look and feel and running on
% different platforms
prepareLayout(hMainFigure);

First, prepareLayout uses findall to retrieve the handles of all objects
contained in the figure. The list of retrieved handles also includes the
colorPalette, which is embedded in the iconEditor, and its children. The
figure’s handle is passed to findall as the input argument topContainer.

function prepareLayout(topContainer)
...
allObjects = findall(topContainer);

Background Color. The default component background color is the standard
system background color on which the GUI is running. This color varies on
different computer systems, e.g., the standard shade of gray on the PC differs
from that on UNIX, and may not match the default GUI background color.

The prepareLayout function sets the background color of the GUI to be the
same as the default component background color. This provides a consistent
look within the GUI, as well as with other application GUIs.

It first retrieves the default component background color from the root object.
Then sets the GUI background color using the figure’s Color property.

defaultColor = get(0,'defaultuicontrolbackgroundcolor');
if isa(handle(topContainer),'figure')

...

% Make figure color match that of GUI objects
set(topContainer, 'Color',defaultColor);

end

15-40

Icon Editor

Selecting Units. The prepareLayout function decides what units to use
based on the GUI’s resizability. It uses strcmpi to determine the value of the
GUI’s Resize property. Depending on the outcome, it sets the Units properties
of all the objects to either Normalized or Characters.

% Make the GUI run properly across multiple platforms by using
% the proper units
if strcmpi(get(topContainer, 'Resize'),'on')

set(allObjects(isprop(allObjects,'Units')),...
'Units','Normalized');

else
set(allObjects(isprop(allObjects,'Units')),...

'Units','Characters');
end

For a resizable figure, normalized units map the lower-left corner of the
figure and of each component to (0,0) and the upper-right corner to (1.0,1.0).
Because of this, component size is automatically adjusted to its parent’s size
when the GUI is displayed.

For a nonresizable figure, character units automatically adjusts the size and
relative spacing of components as the GUI displays on different computers.

Character units are defined by characters from the default system font. The
width of a character unit equals the width of the letter x in the system font.
The height of a character unit is the distance between the baselines of two
lines of text. Note that character units are not square.

Making a GUI Modal
iconEditor is a modal figure. Modal figures remain stacked above all normal
figures and the MATLAB command window. This forces the user to respond
without being able to interact with other windows. iconEditor makes the main
figure modal by setting its WindowStyle property to modal.

hMainFigure = figure(...
...

'WindowStyle','modal',...

See the Figure Properties in the MATLAB Function Reference documentation
for more information about using the WindowStyle property.

15-41

15 Examples of GUIs Created Programmatically

Sharing Data Between Two GUIs
The iconEditor embeds a GUI, the colorPalette, to enable the user to select
colors for the icon cells. The colorPalette returns the selected color to the
iconEditor via a function handle.

The colorPalette GUI. Like the iconEditor, the colorPalette defines a cell
array, mOutputArgs, to hold its output arguments.

mOutputArgs = {}; % Variable for storing output when GUI returns

Just before returning, colorPalette assigns mOutputArgs the function
handle for its getSelectedColor helper function and then assigns
mOutputArgs to varargout to return the arguments.

% Return user defined output if it is requested
mOutputArgs{1} =@getSelectedColor;
if nargout>0

[varargout{1:nargout}] = mOutputArgs{:};
end

The iconEditor executes the colorPalette’s getSeclectedColor function
whenever it invokes the function that colorPalette returns to it.

function color = getSelectedColor
% function returns the currently selected color in this
% colorPlatte

color = mSelectedColor;

The iconEditor GUI. The iconEditor function calls colorPalette only once
and specifies its parent to be a panel in the iconEditor.

% Host the ColorPalette in the PaletteContainer and keep the
% function handle for getting its selected color for editing
% icon.
mGetColorFcn = colorPalette('parent', hPaletteContainer);

This call creates the colorPalette as a component of the iconEditor and then
returns a function handle that iconEditor can call to get the currently
selected color.

15-42

Icon Editor

The iconEditor’s localEditColor helper function calls mGetColorFcn,
the function returned by colorPalette, to execute the colorPalette’s
getSelectedColor function.

function localEditColor
% helper function that changes the color of an icon data
% point to that of the currently selected color in
% colorPalette

if mIsEditingIcon
pt = get(hIconEditAxes,'currentpoint');
x = ceil(pt(1,1));
y = ceil(pt(1,2));
color = mGetColorFcn();
% update color of the selected block
mIconCData(y, x,:) = color;
localUpdateIconPlot();

end
end

Achieving Proper Resize Behavior
The prepareLayout utility function sets the Units properties of all the GUI
components to enable the GUI to resize correctly on multiple platforms. The
iconEditor calls prepareLayout with the handle of the main figure, in the
initialization section of the M-file.

prepareLayout(hMainFigure);

First, prepareLayout uses findall to retrieve the handles of all objects
contained in the figure. The list of retrieved handles includes the
colorPalette, which is embedded in the iconEditor, and its children. The
figure’s handle is passed to findall as the input argument topContainer.

function prepareLayout(topContainer)
...
allObjects = findall(topContainer);

Then, prepareLayout uses strcmpi to determine if the GUI is resizable.
Depending on the outcome, it sets the Units properties of all the objects to
either Normalized or Characters.

15-43

15 Examples of GUIs Created Programmatically

if strcmpi(get(topContainer, 'Resize'),'on')
set(allObjects(isprop(allObjects,'Units')),...

'Units','Normalized');
else

set(allObjects(isprop(allObjects,'Units')),...
'Units','Characters');

end

Note The iconEditor is resizable because it accepts the default value, on, of
the figure Resize property.

Resizable Figure. Normalized units map the lower-left corner of the figure
and of each component to (0,0) and the upper-right corner to (1.0,1.0). Because
of this, when the GUI is resized, component size is automatically changed
relative its parent’s size.

Nonresizable Figure. Character units automatically adjusts the size and
relative spacing of components as the GUI displays on different computers.

Character units are defined by characters from the default system font. The
width of a character unit equals the width of the letter x in the system font.
The height of a character unit is the distance between the baselines of two
lines of text. Note that character units are not square.

15-44

A

Examples

Use this list to find examples in the documentation.

A Examples

Simple Examples (GUIDE)
“Example: Simple GUI” on page 2-3
“Using a Modal Dialog to Confirm an Operation” on page 10-52

Simple Examples (Programmatic)
“Example: Simple GUI” on page 3-2

Programming GUI Components (GUIDE)
“Push Button” on page 8-20
“Toggle Button” on page 8-21
“Radio Button” on page 8-22
“Check Box” on page 8-23
“Edit Text” on page 8-23
“Slider” on page 8-25
“List Box” on page 8-25
“Pop-Up Menu” on page 8-26
“Panel” on page 8-27
“Button Group” on page 8-28
“Axes” on page 8-30
“ActiveX Control” on page 8-33
“Menu Item” on page 8-41

Application-Defined Data (GUIDE)
“GUI Data Example: Passing Data Between Components” on page 9-8
“Application Data Example: Passing Data Between Components” on page
9-11
“UserData Property Example: Passing Data Between Components” on
page 9-12

A-2

Application Examples (GUIDE)

Application Examples (GUIDE)
“GUI with Multiple Axes” on page 10-2
“List Box Directory Reader” on page 10-9
“Accessing Workspace Variables from a List Box” on page 10-16
“A GUI to Set Simulink Model Parameters” on page 10-21
“An Address Book Reader” on page 10-35

GUI Layout (Programmatic)
“File Template” on page 11-4
“Check Box” on page 11-16
“Edit Text” on page 11-17
“List Box” on page 11-18
“Pop-Up Menu” on page 11-20
“Push Button” on page 11-21
“Radio Button” on page 11-23
“Slider” on page 11-24
“Static Text” on page 11-26
“Toggle Button” on page 11-27
“Panel” on page 11-30
“Button Group” on page 11-32
“Adding Axes” on page 11-33
“Adding ActiveX Controls” on page 11-37

Programming GUI Components (Programmatic)
“Check Box” on page 12-16
“Edit Text” on page 12-16
“List Box” on page 12-18
“Pop-Up Menu” on page 12-19
“Push Button” on page 12-20
“Radio Button” on page 12-21
“Slider” on page 12-21

A-3

A Examples

“Toggle Button” on page 12-22
“Panel” on page 12-23
“Button Group” on page 12-23
“Programming Axes” on page 12-25
“Programming ActiveX Controls” on page 12-28
“Programming Menu Items” on page 12-28
“Programming Toolbar Tools” on page 12-31

Application-Defined Data (Programmatic)
“Nested Functions Example: Passing Data Between Components” on page
13-9
“GUI Data Example: Passing Data Between Components” on page 13-13
“Application Data Example: Passing Data Between Components” on page
13-16
“UserData Property Example: Passing Data Between Components” on
page 13-18

Application Examples (Programmatic)
“GUI with Axes, Menu, and Toolbar” on page 15-3
“Color Palette” on page 15-17
“Icon Editor” on page 15-29

A-4

Index

IndexA
ActiveX controls

adding to layout 6-51
programming 8-33 12-28

aligning components
in GUIDE 6-62

Alignment Tool
GUIDE 6-62

application data
appdata functions 9-5 13-5

application-defined data
application data 9-5 13-5
GUI data 9-2 13-2
in GUIDE GUIs 9-1
UserData property 9-6 13-7

axes
multiple in GUI 10-2

axes, plotting when hidden 10-31

B
background color

system standard for GUIs 6-102 11-63
backward compatibility

GUIs to Version 6 5-4
button groups 6-22 11-11

adding components 6-25

C
callback

arguments 8-10
callback templates (GUIDE)

add comments 5-8
callbacks

sharing data 9-8
check boxes 8-23 12-16
color of GUI background 5-12
command-line accessibility of GUIs 5-10

compatibility across platforms
GUI design 6-101

component identifier
assigning in GUIDE 6-27

component palette
show names 5-7

components for GUIs
GUIDE 6-19

components in GUIDE
aligning 6-62
copying 6-54
cutting and clearing 6-54
front-to-back positioning 6-55
moving 6-57
pasting and duplicating 6-55
resizing 6-60
selecting 6-54
tab order 6-67

confirmation
exporting a GUI 5-2
GUI activation 5-2

context menus
associating with an object 6-82
creating in GUIDE 6-70
creating with GUIDE 6-79
menu items 6-80
parent menu 6-79

cross-platform compatibility
GUI background color 6-102 11-63
GUI design 6-101
GUI fonts 6-101 11-62
GUI units 6-103 11-64

D
data

sharing among GUI callbacks 9-8
default system font

in GUIs 6-101 11-62

Index-1

Index

E
edit text 8-23 12-16
exporting a GUI

confirmation 5-2

F
FIG-file

generate in GUIDE 5-13
generated by GUIDE 5-11

files
GUIDE GUI 7-2

fixed-width font
in GUIs 6-102 11-62

fonts
using specific in GUIs 6-102 11-63

function prototypes
GUIDE option 5-11

G
GUI

adding components with GUIDE 6-18
application-defined data (GUIDE) 9-1
command-line arguments 8-16
compatibility with Version 6 5-4
designing 6-3
GUIDE options 5-9
help button 10-32
laying out in GUIDE 6-1
naming in GUIDE 7-2
opening function 8-16
renaming in GUIDE 7-3
resize function 10-48
resizing 5-10
running 7-10
saving in GUIDE 7-4
standard system background color 6-102

11-63
using default system font 6-101 11-62

with multiple axes 10-2
GUI components

aligning in GUIDE 6-57
GUIDE 6-19
how to add in GUIDE 6-22
moving in GUIDE 6-57
tab order in GUIDE 6-67

GUI data
application-defined data 9-2 13-2

GUI export
confirmation 5-2

GUI files
in GUIDE 7-2

GUI layout in GUIDE
copying components 6-54
cutting and clearing components 6-54
moving components 6-57
pasting and duplicating components 6-55
selecting components 6-54

GUI object hierarchy
viewing in GUIDE 6-100

GUI options (GUIDE)
function prototypes 5-11
singleton 5-11
system color background 5-11

GUI size
setting with GUIDE 6-16

GUI template
selecting in GUIDE 6-7

GUI units
cross-platform compatible 6-103 11-64

GUIDE
adding components to GUI 6-18
application examples 10-1
application-defined data 9-1
command-line accessibility of GUIs 5-10
coordinate readouts 6-57
creating menus 6-70
generate FIG-file only 5-13
generated M-file 5-11

Index-2

Index

grids and rulers 6-65
GUI background color 5-12
GUI files 7-2
how to add components 6-22
Object Browser 6-100
preferences 5-2
renaming files 7-3
resizing GUIs 5-10
saving a GUI 7-4
selecting template 6-7
starting 6-5
tool summary 4-3
toolbar editor 6-87
what is 4-2

GUIDE callback templates
add comments 5-8

GUIDE GUIs
figure toolbars for 6-86

H
handles structure

adding fields 9-4 13-4
help button for GUIs 10-32
hidden figure, accessing 10-31

I
identifier

assigning to GUI component 6-27

L
Layout Editor

show component names 5-7
Layout Editor window

show file extension 5-8
show file path 5-8

list boxes 8-25 12-18
example 10-9

M
M-file

generated by GUIDE 5-11
menu item

check 8-42 12-30
menus

callbacks 8-41 12-28
context menus in GUIDE 6-79
creating in GUIDE 6-70
drop-down menus 6-71
menu bar menus 6-71
menu items 6-74 6-80
parent of context menu 6-79
pop-up 8-26 12-19
specifying properties 6-73

moving components
in GUIDE 6-57

N
naming a GUI

in GUIDE 7-2

O
Object Browser (GUIDE) 6-100
opening .fig files 10-15
options

GUIDE GUIs 5-9

P
panels 6-22 11-11

adding components 6-25
pop-up menus 8-26 12-19
preferences

GUIDE 5-2

R
radio buttons 8-22 12-21

Index-3

Index

renaming GUIDE GUIs 7-3
resize function for GUI 10-48
resizing components

in GUIDE 6-60
resizing GUIs 5-10
running a GUI 7-10

S
saving GUI

in GUIDE 7-4
shortcut menus

creating in GUIDE 6-79
single instance 5-12
singleton GUI

GUIDE option 5-11
size of GUI

setting with GUIDE 6-16
sliders 6-21 11-12
system color background

GUIDE option 5-11

T
tab order

components in GUIDE 6-67
Tab Order Editor 6-67
Tag property

assigning in GUIDE 6-27
template for GUI

selecting in GUIDE 6-7
toggle buttons 8-21 12-22
toolbar

show in GUIDE Layout Editor 5-7
Toolbar Editor

using 6-87
toolbar menus

creating with GUIDE 6-71
toolbars

creating 6-84

U
units for GUIs

cross-platform compatible 6-103 11-64
UserData property

application-defined data 9-6 13-7

Index-4

	toc
	Introduction to Creating GUIs
	About GUIs in MATLAB
	What Is a GUI?
	How Does a GUI Work?
	Where Do I Start?

	Creating a Simple GUI with GUIDE
	GUIDE: A Brief Introduction
	Laying Out a GUI
	Programming a GUI

	Example: Simple GUI
	Simple GUI Overview
	View Completed Layout and Its GUI M-File

	Laying Out a Simple GUI
	Opening a New GUI in the Layout Editor
	Setting the GUI Figure Size
	Adding the Components
	Aligning the Components
	Adding Text to the Components
	Labeling the Push Buttons
	Entering Pop-Up Menu Items
	Modifying the Static Text

	Completed Layout

	Saving the GUI Layout
	Programming a Simple GUI
	Adding Code to the M-file
	Generating Data to Plot
	Programming the Pop-Up Menu
	Programming the Push Buttons

	Running the GUI

	Creating a Simple GUI Programmatically
	Example: Simple GUI
	Simple GUI Overview
	View Completed Example

	Function Summary
	Creating a GUI M-File
	Laying Out a Simple GUI
	Creating the Figure
	Adding the Components

	Initializing the GUI
	Programming the GUI
	Programming the Pop-Up Menu
	Programming the Push Buttons
	Associating Callbacks with Their Components

	Running the Final GUI
	Final M-File
	Running the GUI

	Creating GUIs with GUIDE
	What Is GUIDE?
	GUIDE: An Overview
	GUI Layout
	GUI Programming

	GUIDE Tools Summary

	GUIDE Preferences and Options
	GUIDE Preferences
	Setting Prefernces
	Confirmation Preferences
	Prompt to Save on Activate
	Prompt to Save on Export

	Backward Compatibility Preference
	Ensure Backward Compatibility (-v6)

	All Other Preferences
	Show Toolbar
	Show Names in Component Palette
	Show File Extension in Window Title
	Show File Path in Window Title
	Add Comments for Newly Generated Callback Functions

	GUI Options
	The GUI Options Dialog Box
	Resize Behavior
	Command-Line Accessibility
	Generate FIG-File and M-File
	Generate Callback Function Prototypes
	GUI Allows Only One Instance to Run (Singleton)
	Use System Color Scheme for Background

	Generate FIG-File Only

	Laying Out a GUIDE GUI
	Designing a GUI
	Starting GUIDE
	Selecting a GUI Template
	Accessing the Templates
	Template Descriptions
	Blank GUI
	GUI with Uicontrols
	GUI with Axes and Menu
	Modal Question Dialog

	Setting the GUI Size
	Adding Components to the GUI
	Available Components
	Adding Components to the GUIDE Layout Area
	Using Coordinates to Place Components
	Adding a Component to a Panel or Button Group
	Assigning an Identifier to Each Component

	Defining User Interface Controls
	Commonly Used Properties
	Push Button
	Slider
	Radio Button
	Check Box
	Edit Text
	Static Text
	Pop-Up Menu
	List Box
	Toggle Button

	Defining Panels and Button Groups
	Commonly Used Properties
	Panel
	Button Group

	Defining Axes
	Commonly Used Properties
	Axes

	Adding ActiveX Controls
	Working with Components in the Layout Area
	Selecting Components
	Copying, Cutting, and Clearing Components
	Pasting and Duplicating Components
	Front-to-Back Positioning

	Locating and Moving Components
	Using Coordinate Readouts
	Dragging Components
	Using Arrow Keys to Move Components
	Setting the Component's Position Property

	Resizing Components
	Dragging a Corner of the Component
	Setting the Component's Position Property

	Aligning Components
	Alignment Tool
	Align Options
	Distribute Options

	Property Inspector
	Grid and Rulers
	Guide Lines
	Creating Guide Lines

	Setting Tab Order
	Creating Menus
	Menus for the Menu Bar
	Adding Standard Menus to the Menu Bar
	Creating a Menu
	Adding Items to a Menu
	Additional Drop-Down Menus
	Cascading Menus
	Laying Out Three Menus

	Context Menus
	Creating the Parent Menu
	Adding Items to the Context Menu
	Associating the Context Menu with an Object

	Creating Toolbars
	Creating Toolbars with GUIDE
	Using the Toolbar Editor
	Adding Tools
	Predefined and Custom Tools
	Adding and Removing Separators
	Moving Tools
	Removing Tools
	Editing a Tool's Properties
	Editing Tool Icons
	Editing Toolbar Properties
	Testing Your Toolbar
	Removing a Toolbar
	Closing the Toolbar Editor

	Editing Tool Icons
	Using the Icon Editor

	Creating Toolbars Programmatically

	Viewing the Object Hierarchy
	Designing for Cross-Platform Compatibility
	Default System Font
	Specifying a Fixed-Width Font
	Using a Specific Font Name

	Standard Background Color
	Cross-Platform Compatible Units
	System-Dependent Units
	Units and Resize Behavior

	Saving and Running a GUIDE GUI
	Naming a GUI and Its Files
	The GUI Files
	File and GUI Names
	Renaming GUIs and GUI Files

	Saving a GUI
	Ways to Save a GUI
	Saving a New GUI
	Saving an Existing GUI

	Running a GUI
	Executing the M-file
	From the GUIDE Layout Editor
	From the Command Line
	From an M-file

	Programming a GUIDE GUI
	Callbacks: An Overview
	Programming of GUIs Created Using GUIDE
	What Is a Callback?
	Kinds of Callbacks

	GUI Files: An Overview
	M-Files and FIG-Files
	GUI M-File Structure
	Adding Callback Templates to an Existing GUI M-File

	Associating Callbacks with Components
	GUI Components
	Setting Callback Properties Automatically
	Deleting Callbacks from a GUI M-File

	Callback Syntax and Arguments
	Callback Templates
	Naming of Callback Functions
	Changing Callback Names Assigned by GUIDE
	Changing the Tag Property
	Changing the Callback Property

	Input Arguments
	handles Structure

	Initialization Callbacks
	Opening Function
	Function Naming and Template
	Input Arguments
	Initial Template Code

	Output Function
	Function Naming and Template
	Input Arguments
	Output Arguments

	Examples: Programming GUIDE GUI Components
	Push Button
	Adding an Image to a Push Button or Toggle Button

	Toggle Button
	Radio Button
	Check Box
	Edit Text
	Retrieving Numeric Data from an Edit Text Component
	Triggering Callback Execution
	Available Keyboard Accelerators

	Slider
	List Box
	Triggering Callback Execution
	List Box Examples

	Pop-Up Menu
	Using Only the Index of the Selected Menu Item
	Using the Index to Determine the Selected String

	Panel
	Button Group
	Axes
	Plotting to an Axes
	Creating Subplots

	ActiveX Control
	Programming an ActiveX Control
	Programming a User Interface Control to Update an ActiveX Contro
	Viewing the Methods for an ActiveX Control
	Saving a GUI That Contains an ActiveX Control
	Compiling a GUI That Contains an ActiveX Control

	Menu Item
	Programming a Menu Title
	Opening a Dialog Box from a Menu Callback
	Updating a Menu Item Check

	Managing and Sharing Application Data in GUIDE
	Mechanisms for Managing Data
	Overview
	GUI Data
	About GUI Data
	GUI Data in GUIDE
	Adding Fields to the handles Structure
	Changing GUI Data in an M-File Generated by GUIDE

	Application Data
	Creating Application Data in GUIDE
	Adding Fields to an Application Data Structure in GUIDE

	UserData Property

	Sharing Data Among a GUI's Callbacks
	GUI Data
	GUI Data Example: Passing Data Between Components

	Application Data
	Application Data Example: Passing Data Between Components

	UserData Property
	UserData Property Example: Passing Data Between Components

	Making Multiple GUIs Work Together
	Overview of Data Sharing Techniques
	Example — A GUIDE GUI with a Modal Dialog for User Input
	Opening the Text Change Dialog
	Managing the Text Change Dialog
	Protecting the Text Change Dialog
	Positioning the Text Change Dialog
	Initializing the Text Change Dialog's Text
	Canceling the Text Change Dialog
	Applying the Text Change

	Example — Individual GUIDE GUIs that Work Together as an Applica
	Requirements for the GUIs
	M-file Implementations
	1. When Icon Editor launches, create the Tool Palette and Color
	2. Set the initial color on the Color Palette when the Icon Edit
	3. Give the Icon Editor access to the Color Palette's current co
	4. When clicking in the editing area, apply the currently select
	5. When mouse pointer is in the edit area, display the current t
	6. Close all windows only when the Icon Editor completes

	Examples of GUIDE GUIs
	GUI with Multiple Axes
	Multiple Axes Example Outcome
	Techniques Used in the Example
	View Completed Layout and Its GUI M-File
	Design of the GUI
	Specifying Default Values for the Inputs
	Identifying the Axes
	GUI Option Settings

	Plot Push Button Callback
	Getting User Input
	Calculating Data
	Targeting Specific Axes
	Plot Button Code Listing

	List Box Directory Reader
	List Box Example Outcome
	View Layout and GUI M-File
	Implementing the GUI
	Specifying the Directory to List
	Loading the List Box
	The List Box Callback
	Defining How to Open File Types
	Determining Which Item the User Selected
	Determining if the Selected Item is a File or Directory
	Opening Unknown File Types

	Accessing Workspace Variables from a List Box
	Workspace Variable Example Outcome
	Techniques Used in This Example
	View Completed Layout and Its GUI M-File
	Reading Workspace Variables
	Reading the Selections from the List Box
	Enabling Multiple Selection
	How Users Select Multiple Items
	Returning Variable Names for the Plotting Functions
	Callbacks for the Plotting Buttons

	A GUI to Set Simulink Model Parameters
	Set Simulink Model Parameters Example Outcome
	Techniques Used in This Example
	View Completed Layout and Its GUI M-File
	How to Use the GUI (Text of GUI Help)
	Changing the Controller Gains
	Running the Simulation
	Plotting the Results
	Removing Results

	Running the GUI
	GUI Options Settings
	Opening the Simulink Block Diagrams

	Programming the Slider and Edit Text Components
	Slider Callback
	Current Value Edit Text Callback

	Running the Simulation from the GUI
	Removing Results from the List Box
	Plotting the Results Data
	Plotting Into the Hidden Figure
	Plot Button Callback Listing

	The GUI Help Button
	Closing the GUI
	The List Box Callback and Create Function
	Setting the Background to White

	An Address Book Reader
	Address Book Reader Example Outcome
	Techniques Used in This Example
	Managing Shared Data
	View Completed Layout and Its GUI M-File
	Running the GUI
	GUI Option Settings
	Calling the GUI

	Loading an Address Book Into the Reader
	Validating the MAT-file
	Check_And_Load Code Listing
	The Open Menu Callback
	Open_Callback Code Listing

	The Contact Name Callback
	Storing and Retrieving Data
	Contact Name Callback

	The Contact Phone Number Callback
	Code Listing

	Paging Through the Address Book — Prev/Next
	Determining Which Button Is Clicked
	Paging Forward or Backward
	Code Listing

	Saving Changes to the Address Book from the Menu
	Saving the Addresses Structure
	Saving the MAT-File
	Save_Callback Code Listing

	The Create New Menu
	The Address Book Resize Function
	Behavior of the Resize Function
	Changing the Width
	Changing the Height
	Ensuring the Resized Figure Is On Screen
	Code Listing

	Using a Modal Dialog to Confirm an Operation
	Modal Dialog Example Outcome
	View Completed Layouts and Their GUI M-Files
	Setting Up the Close Confirmation Dialog
	Setting Up the GUI with the Close Button
	Running the GUI with the Close Button
	How the GUI and Dialog Work

	Creating GUIs Programmatically
	Laying Out a GUI
	Designing a GUI
	Creating and Running the GUI M-File
	File Organization
	File Template
	Running the GUI

	Creating the GUI Figure
	Adding Components to the GUI
	Available Components
	Adding User Interface Controls
	Commonly Used Properties
	Check Box
	Edit Text
	List Box
	Pop-Up Menu
	Push Button
	Radio Button
	Slider
	Static Text
	Toggle Button

	Adding Panels and Button Groups
	Commonly Used Properties
	Panel
	Button Group

	Adding Axes
	Commonly Used Properties
	Axes

	Adding ActiveX Controls

	Aligning Components
	Using the Align Function
	Examples
	Aligning Components Horizontally
	Aligning Components Horizontally While Distributing Them Vertica
	Aligning Components Vertically While Distributing Them Horizonta

	Setting Tab Order
	How Tabbing Works
	Default Tab Order
	Changing the Tab Order

	Creating Menus
	Adding Menu Bar Menus
	Displaying Standard Menu Bar Menus
	Commonly Used Properties
	Menu Bar Menu

	Adding Context Menus
	Commonly Used Properties
	Creating the Context Menu Object
	Adding Menu Items to the Context Menu
	Associating the Context Menu with Graphics Objects
	Forcing Display of the Context Menu

	Creating Toolbars
	Using the uitoolbar Function
	Commonly Used Properties
	Toolbars
	Displaying and Modifying the Standard Toolbar
	Displaying the Standard Toolbar
	Modifying the Standard Toolbar

	Designing for Cross-Platform Compatibility
	Default System Font
	Specifying a Fixed-Width Font
	Using a Specific Font Name

	Standard Background Color
	Cross-Platform Compatible Units
	Units and Resize Behavior
	About Some Units Settings

	Programming the GUI
	Introduction
	Initializing the GUI
	Examples
	Declaring Variables for Input and Output Arguments
	Defining Custom Property/Value Pairs
	Making the Figure Invisible
	Returning Output to the User

	Callbacks: An Overview
	What Is a Callback?
	Kinds of Callbacks
	Associating Callbacks with Components

	Examples: Programming GUI Components
	Programming User Interface Controls
	Check Box
	Edit Text
	List Box
	Pop-Up Menu
	Push Button
	Radio Button
	Slider
	Toggle Button

	Programming Panels and Button Groups
	Panel
	Button Group

	Programming Axes
	Programming ActiveX Controls
	Programming Menu Items
	Programming a Menu Title
	Opening a Dialog Box from a Menu Callback
	Updating a Menu Item Check

	Programming Toolbar Tools
	Push Tool
	Toggle Tool

	Managing Application-Defined Data
	Mechanisms for Managing Data
	Nested Functions
	GUI Data
	About GUI Data
	Creating and Updating GUI Data
	Adding Fields to a GUI Data Structure

	Application Data
	Creating Application Data
	Adding Fields to an Application Data Structure

	UserData Property

	Sharing Data Among a GUI's Callbacks
	Nested Functions
	Nested Functions Example: Passing Data Between Components

	GUI Data
	GUI Data Example: Passing Data Between Components

	Application Data
	Application Data Example: Passing Data Between Components

	UserData Property
	UserData Property Example: Passing Data Between Components

	Managing Callback Execution
	Callback Interruption
	Callback Execution
	How the Interruptible Property Works
	How the Busy Action Property Works
	Example
	Using the Example GUIs
	View the Complete GUI M-File

	Examples of GUIs Created Programmatically
	Introduction
	GUI with Axes, Menu, and Toolbar
	The Example
	Techniques Used in the Example
	View and Run the Completed GUI M-Files
	Creating the Data
	Creating the GUI and Its Components
	The Main Figure
	The Axes
	The Pop-Up Menu
	The Update Push Button
	The File Menu and Its Menu Items
	The Toolbar and Its Tools

	Initializing the GUI
	Defining the Callbacks
	Update Button Callback
	Open Menu Item Callback
	Print Menu Item Callback
	Close Menu Item Callback

	Helper Function: Plotting the Plot Types

	Color Palette
	The Example
	The Components
	Using the Color Palette
	Calling the colorPalette Function

	Techniques Used in the Example
	View and Run the Completed GUI M-File
	Subfunction Summary
	M-File Structure
	GUI Programming Techniques
	Passing Input Arguments to a GUI
	Passing Output to a Caller on Returning
	Sharing Data Between Two GUIs

	Icon Editor
	The Example
	The Components
	Using the Icon Editor

	Techniques Used in the Example
	View and Run the Completed GUI M-Files
	Subfunction Summary
	M-File Structure
	GUI Programming Techniques
	Returning Only After the User Makes a Choice
	Passing Input Arguments to a GUI
	Retrieving Output on Return from a GUI
	Protecting a GUI from Inadvertent Access
	Running a GUI on Multiple Platforms
	Making a GUI Modal
	Sharing Data Between Two GUIs
	Achieving Proper Resize Behavior

	Examples
	Simple Examples (GUIDE)
	Simple Examples (Programmatic)
	Programming GUI Components (GUIDE)
	Application-Defined Data (GUIDE)
	Application Examples (GUIDE)
	GUI Layout (Programmatic)
	Programming GUI Components (Programmatic)
	Application-Defined Data (Programmatic)
	Application Examples (Programmatic)

	Index

	tables
	Functions Used to Create the Simple GUI
	Other MATLAB Functions Used to Program the GUI
	Functions for Managing Application Data
	Functions for Managing Application Data

